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SOMMARIO

Si sviluppa una soluzione asintotica per la propagazione di una frattura in un materiale
elasto-fragile contenente difetti. La fragilita del materiale é tale da giustificare I’adozione
del criterio di Sih per la propagazione (Ky=0). La soluzione, seppure approssimata nel
senso delle tecniche perturbative, € esprimibile in forma chiusa. 1 difetti sono
rappresentati da cavita di forma circolare o ellittica e/o inclusioni elastiche circolari. Il
confronto con risultati sperimentali relativi a gres porcellanato, smalto e compositi
Allumina/Zirconia risulta molto soddisfacente.

1. INTRODUCTION

The analysis of failure mechanisms of brittle, composite (defect-containing, porous,
particulate/fiber-reinforced) materials has design implications in a broad range of
contexts. Examples of these materials are: structural and traditional ceramics, which may
contain flaws or pores, fibrous biological materials, porous rocks (e.g. tuff, pumice-
stone, blast furnace slag), porous high-strength metals and ceramic or metal composites
In other matenals, like concrete or certain rocks (e.g. chalk with flints), stiff inclusions
co-exist in a soft matrix with pores and microcracks.

It is obvious that fracture propagation is affected by the presence of inhomogeneities
These modify the crack trajectory and, consequently, influence the toughness of the
material. In particular, the toughening effect of a diluted, spherical porosity in a brittle
matrix remains still controversial (see, e.g, Duan et al , 1995, Claussen, 1976) On one
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hand, pores may act as stress concentrators and initiate strain localisation and subsequent
microcrack bridging between cavities. On the other hand, pores deviate the crack path
from linearity and, when the crack tip intersects a cavity, this may produce a stress
release. From the latter point of view pores yield a shielding effect on crack propagation.
The above discussion elucidates the theoretical and practical relevance of developing
analytical models capable of describing fracture mechanisms of brittle, elastic materials
containing voids or defects. This is the focus of works by Rubinstein (1986), Rose
(1986) and of the present article. An asymptotic solution is presented for the
determination of the trajectory of a crack growing in an elastic-brittle isotropic material,
under plane strain (or stress) conditions. With the term "brittle" we mean a material in
which the fracture propagates according to the Sih (1974) criterion, namely, the crack
grows so that at its tip Ky=0 (implying that the energy release rate is locally a maximum).
Two perturbed solutions are employed, one of which concerns the modification of the
near-tip fields due to a perturbation from rectilinearity in the crack trajectory. In the
other perturbed solution, the defects are introduced and the modification on the near-tip
field evaluated. The former analysis is similar to some extent to the solution obtained by
Cotterell and Rice (1980). The latter analysis was initiated by Zorin et al. (1988) and
developed in (Movchan et al. 1991; Movchan, 1992). The analysis is based on the
concept of Polya-Szegd (1951) matrix, which characterises the far-field effects of the
defect. An experimental program has been developed for comparing real fracture
patterns in traditional and advanced ceramic materials to analytical simulation of crack
trajectory. Surface cracks have been induced in various ceramic materials using Vicker
indenter and subsequently observed using SEM. The observations regard porous
ceramic materials, namely, porcelain stoneware and glaze, and Zirconia/Alumina
composites. In all these materials fracture trajectories are far from linearity. Porcelain
stoneware and glaze contain a dilute near-spherical or elliptical porosity, whereas the
composites material consists of a Zirconia matrix which contains 20% of near-spherical
Alumina particles. As a conclusion, it can be pointed out that the analytical solution
shows impressive agreement with experiments.

2. ANALYTICAL MODEL

2.1 Problem formulation

A semi-infinite, plane crack is considered, curved in the portion extending from the tip
till a point where it becomes rectilinear, as indicated in Fig.1. With reference to a
coordinate system having the origin at that point and the axis x,; tangent to the rectilinear
crack surfaces, the curved portion of the crack has length /. If the curved portion of the
crack is sufficiently regular and close to rectilinearity, it can be treated as a perturbed
straight crack. In this case, the crack geometry can be specified by introducing a smooth
function 4 of x;, which, when multiplied by a perturbation parameter, say, @, specifies the
x;-coordinate of the curved portion of the crack. Therefore, the semi-infinite crack is
described by the set Mo={( x1, x2) : x; </, x;=a h(x;)}, with 0 <a <<1.

A defect is considered in the form of a cavity or an inclusion, in a position which is to
some extent arbitrary, in the sense that it can be placed in an arbitrary point x° but the
ratio between the diameter of the defect and the minimal distance from crack trajectory
has to be small enough to allow the use of a perturbed solution, that will be introduced in
the following. In particular, we can use stretched coordinates £ 'x and define the defect
by the set Q.={(x,, I})fE_l(I|"I:}, xz—xg)ngRz}, where e="4diamQ,/dist(£2,, My)<<l.
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reference crack, M,
Fig.1 - Crack geometry and reference systems

The above-described crack problem regards plane strain deformation of linear elastic,
isotropic materials, characterised by the Lamé constants A and W, for the matrix material,
and A and L, for the inclusion. A displacement vector u, solution of the above problem,
satisfies the system of equilibrium equations

Lu:=pVu+A+)VVe =0, xe R\ (Q. U M,), (1)

L°u® == poVu® + (ho 410 ) VV-° =0, xe R*\ Q,, 2)
and the boundary condition on crack faces

o”(u ;x) =0, x e M (3)
and on the inclusion boundary

o ;x)=0™W’ ;x), u=u’ xe dl),. (4)
For the case of a cavity, (4) are replaced by the condition

o™ (u;x)=0, x€ d .. (5)
At infinity, the displacement vector is supposed to have the following asymptotic form

ux) - Ki° r'* ®Y(), asr— oo, (6)

where Ki~ is given, and the polar components of the vector function @'= (®', , ®",)" are
@

3
(2%- I)cos%—cm'?(p L i)seng

@' (@) = ; d' (@) = ; 7
AQ) 4#\1{5 o(Q) 4”.@ (7)
where x =(A+3)(A+1L) "', is the elastic bulk modulus.

2.2 Crack deflection due to defects
The perturbation introduced by a defect on the near tip crack fields is considered for a
rectilinear crack Mo. For this problem, following Movchan et al. (1991) and Movchan
and Movchan (1995) the displacement field around the crack tip can be represented as
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u(x) - v(x) +¢€ w(x), (8)

where v(x) = K; r'? ®'(¢) is the displacement field corresponding to a rectilinear (i.e.
unperturbed) crack in a plane without inclusion, and €’w represents a correction term
associated with the perturbation field produced by the small defect €. The reason for

which the correction term is second-order in € can be appreciated by considering the
Neumann boundary value problem of a homogeneous elastic isotropic solid containing a
defect (Movchan and Movchan,1995). The vector field w satisfies the system of equation

[ 1
Lw(x) = — i [V‘;}’TP(I}J PVP8(x-x"), xe R\M, (9)
e | |2 =

and the homogeneous traction boundary conditions on the crack faces. In eqn.(9) & is the
Dirac function and:

d
8 . ] {é_]
T . X
VO = | ox, | Vs | 8| vP= =151 (10)
= 0 -] T x L—
ox,
Function w(x) can be written in components:
wi(x) = — i P VIT(x)+ O(x7?), (11)

jok=1 =

where, T is the Somigliana matrix (Fichera, 1972; Parton and Perlin, 1982)

2
x XX
—xInyx} +x} +—— — )

- A+ b +x12 I|2+x; l
T(x) = 47;u(l+2“) X x, | m‘i_ _x; ,(12)
X7 + X2 SN TR

and Pj is the P6lya-Szeg6 matrix, which characterises the defect. For instance, when the
defect is a circular cavity of radius c, thé Pélya-Szegd matrix becomes

2 2 - SRR
_czrl:(l+2|;1j A+3n+20q A =p’ 420 0 ]

P= TJ—F—)}E—;J,“#ZM A 4+3p+2ipe 0 | (13)
RO+ R . e

We are now In a position to investigate the main problem, namely, perturbation of the
crack trajectory. In the absence of a defect, the crack would propagate rectilinearly under
Mode I loading, a condition which trivially satisfies the Sih criterion Ky=0. The presence
of a defect, even small, produces a perturbation in terms of a smooth deflection from
linearity of crack trajectory. Let us consider the asymptotic of the displacement field near
the tip of perturbed crack M. A local system of coordinates y* can be introduced, which
has the origin centred in the tip of the perturbed crack (i.e. in the point of coordinates (I,
oth(l)) and axis y,” directed toward the tangent to the crack trajectory at the crack-tip
(Fig.1). The asymptotic of the displacement vector u, relative to the perturbed crack, can
be represented as follows
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u(y*)~ 2.r," Ki(e) @(pa), Ki(a) ~ K; () + o Ki' (D), (14)
J=1
where quantities evaluated in / are referred to the unperturbed problem, so that Ky(/)=0.
A Taylor series expansion near o = 0 yields

1+

uw.uwvmm{ -~

HD KD r W) + Ki() P @l(g) +

e 1 - . 172 .11 _]
[ 1) -5 &) k() Jf L (0) J.(15)

where the components of ®" and ¥" are given by

(1-2k)sin ? 4 3sin=2 y 7 (2x + 1)cos 2
" () = 2 " (g) = —2 — . 09
421 ] ’ 4p~/2n '
3 3
(1+2k)sin 5.0 Sin— (2Zx - Dcos <3 c:f:;u.'9
V8n(l+x) ! V8r(1+x)

The stress components associated to (15) exhibit a strong unphysical singularity, a fact
related to the presence of a boundary layer near the crack tip. It is a well-known
expedient (Bueckner, 1970) to introduce a weight function

C'=r'""¥g), (18)
and to integrate inaring Zx={y: I/R<|y| <R}
[ €0) Lwp) - wH) L) = 3 VO PV () (19)
g\, Jk=1 o
Where the field:
1
wHO) =) + = EhD K W), (20)

satisfies the same Lamé system and the traction boundary conditions on M, as &', which
is the term of (15) that multiplies c, but does not have a singularity at the crack tip (/,0).
Unperturbed crack field (8) has to match with (15), thus a = &*. Moreover, using the
Betti formula to the Lh.s. of (20), taking the limit R — o and integrating, gives:

3
Ka' () =Ki() {12 h' () - 2 VPv(y*) P, VI (3°)}. @21)
jk=1 o ™
The Sih criterion of crack propagation, K= 0, yields
i
B () =2 2 VPu(°)P V¥ (), (22)
k= g >

which may be easily integrated, obtaining, finally
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. I _
h(l) = e (cosO I(B)PL(®) — I(0)PI(0)}, (23)

where
~l+y)

042 0,2 (24)
VO +(=1+ )

cosO =

and

S
e cos E[K— 1-2sin k. sin -39]
4;.1; 21 2 2 2
1
o) = alon cos%[l(— I+ 2sin ;—P.s'in -32—{9] I. (25)
|

k 2 % = sm(pco.s—z- J

Equation (23) gives the crack trajectory h, as a function of the crack tip position [ and of
the coordinates of the defect centre, y°. The defect is characterised by the Pélya-Szegi
matrix and more than one defect can be considered with a straightforward generalisation
of the above computations.

2.3 Examples of crack trajectories _
Crack trajectories for circular voids and elastic inclusions in different relative positions
are shown in Fig. 2.
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Fig.2 - Crack trajectories: (a) two circular voids of different radius, (b) three circular voids of equal
radius, (c) two circular elastic inclusions (of different radius) stiffer than the matrix, (d) three circular

elastic inclusions (of equal radius) stiffer than the matrix.
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Fig. 2 (a) and (b) refer to two and three circular cavities and Fig. 2 (c) and (d) to two
and three circular inclusions. For the elastic inclusions relative to Fig. 2 (¢) and 2 (d),
Ho/L=1000 and (Ag+po)/(A+L)=450 has been assumed. Note that inclusions stiffer than
the matrix repel the crack, whereas softer inclusions or voids attract it.

3. EXPERIMENTAL RESULTS

The SEM photographs relative to crack patterns in porcelain stoneware, glaze and
Zirconia/Alumina composites are shown in Figs. 3-5 (a). The cracks were induced using
Vicker indenter. The same crack trajectories have been simulated using eqn. (23) and
represented in Figs. 3-5 (b).
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(a) (b)

Fig. 3 - (a) SEM photograph of glaze: bar is 10 um, (b) simulated crack trajectory

(a)

Fig. 4 - (a) SEM photograph of porcelain stoneware: bar is 20 um, (b) simulated crack trajectory
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The defects relative to Figs. 3(a) and 4(a) have been represented through elliptical and
circular voids in Figs. 3(b) and 4(b), whereas aggregation of Zirconia inclusions have
been represented by large circular stiff inclusions in Fig.5(b). In the case of Fig. 5 the
elastic constants of Zirconia and Alumina were known. In particular, A = 125 GPa and i
= 75 GPa, have been used for Zirconia matrix and Ao = 140 GPa and py = 180 GPa for
Alumina inclusion.

(@) | (b)

Fig. 5 - (a) SEM photograph of ZrO,/Al,0, composite: bar is 1 pm, (b) simulated crack trajectory
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