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ABSTRACT. The cracking behaviour of a composite beam with multiple reinforcing fibers under periodic 
traction-flexure is analysed through a fracture mechanics-based model, where the edge-cracked beam section is 
exposed to external loads and crack bridging reactions due to the fibers. Assuming a rigid-perfectly plastic 
bridging law for the fibers and a linear-elastic law for the matrix, the statically indeterminate bridging forces are 
obtained from compatibility conditions. Under general load paths, shakedown conditions are explored by 
making use of the Melan’s theorem, here reformulated for the discrete problem under consideration, where the 
crack opening displacement at the fiber level plays the role of the plastic strain in the counterpart problem of an 
elastic-plastic solid.  The limit of shakedown is determined through an optimization procedure based on a linear 
programming technique. 
 
SOMMARIO. Viene analizzato il comportamento meccanico di una trave in materiale composito fibro-rinforzato 
sollecitata a trazione-flessione mediante un modello basato sulle meccanica della frattura, ove la sezione 
fessurata della trave risulta soggetta a carichi esterni e alle reazioni di chiusura della fessura prodotte dalle fibre. 
Assumendo  per le fibre una legge di cucitura rigido-plastica e per la matrice un comportamento elastico-lineare, 
dalle condizioni di congruenza si ricavano le forze di cucitura staticamente indeterminate. Le condizioni di 
shakedown per generici percorsi di carico sono determinate mediante l’uso del teorema di Melan, qui 
riformulato per il problema discreto considerato trattando gli spostamenti di apertura della fessura al livello delle 
singole fibre come equivalenti alle deformazioni plastiche di una solido elasto-plastico. Il limite di shakedown è 
determinato attraverso una procedura di ottimizzazione basata su una tecnica di programmazione lineare.  
 
KEYWORDS. Brittle matrix composite; Fiber crack bridging; Melan’s theorem; Shakedown. 
 
 
 
INTRODUCTION  
 

everal composite materials used in different engineering applications consist of a brittle matrix and ductile 
reinforcements (bars, wires, fibers, etc.).  By incorporating such reinforcements into the matrix, several mechanical 
properties are enhanced, including: cracking resistance, ductility, impact resistance, fatigue strength.  Cracks might 

develop in structures of reinforced brittle-matrix composites, so that the overall mechanical behaviour, including the 
capacity to dissipate energy under cyclic loading, would strongly be affected by the crack bridging reactions of the 
reinforcements.  Moreover, the progressive crack growth under cyclic loading influences the bridging behaviour, and 
causes significant changes in the mechanical properties of the above materials (strength, toughness, stiffness, hysteretic 
behaviour, etc.), eventually leading to failure. 
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Numerous theoretical models are available in the literature to describe the crack bridging behaviour of fiber-reinforced 
composites.  For instance, under monotonic loading, the mechanics of elastic fibers, which might debond at the fiber-
matrix interfaces, is investigated in Refs [1-5] with reference to their bridging effect on matrix cracking.  Under periodic 
loading, the crack bridging behaviour, including cyclic debonding at fiber–matrix interface of fibers, is analysed in Refs [6-
10] with the aim of predicting also the fatigue strength of the composite materials.  According to the model proposed by 
the first two authors in Refs [11, 12] (see also Ref. 13), a fibrous composite beam with an edge crack submitted to cyclic 
bending moment can be examined by assuming a crack bridging model with a general linear isotropic tensile 
softening/compressive hardening law for the fibers and a linear- elastic law for the matrix.  Elastic and plastic shakedown 
phenomena can be discussed in terms of generalized cross-sectional quantities and, by employing a fatigue crack growth 
law, the mechanical behaviour up to failure can be captured. 
Within the framework of the LEFM-based model proposed in Refs [11, 12], the present paper is devoted to investigate, 
under combined axial force and bending moment describing general periodic load paths, the conditions of elastic 
shakedown (in the following the plain word ‘shakedown’ is used to mean ‘elastic shakedown’) by exploiting the Melan’s 
theorem [14].  As a matter of fact, a parallel between the classical problem of an elastic-perfectly plastic body, for which 
the Melan’s theorem was originally formulated, and the present crack bridging model with rigid-plastic fibers is drawn in 
the following.  Then, the limit condition of shakedown under any traction-flexure history within a given load domain is 
determined through an optimization procedure. 
 
 
THE CRACK BRIDGING MODEL  
 

onsider an edge-cracked portion of fiber-reinforced composite beam with a rectangular cross-section under time-
varying axial force F(t) and bending moment M(t) (Fig.1), where time t should be regarded as the ordering 
variable of the events, being the problem under consideration nominally static.  The crack (which might be 

regarded as an existing flaw) in the lower part of the beam presents a depth a , and is assumed to be subjected to Mode I 
loading (i.e. the crack is normal to the longitudinal axis of the beam).  Unidirectional fibers are discretely distributed across 
the crack and oriented along the longitudinal axis of the beam.  The position of the i-th fiber ( ni ,...,1 ) is described by 

the distance ic  with respect to the bottom of the beam cross-section.  Further, the relative crack depth ba /  and the 

normalized coordinate bcii /  are defined. 
The matrix is assumed to present a linear elastic constitutive law, whereas the fibers are assumed to behave as rigid-
perfectly plastic bridging elements which connect together the two surfaces of the crack.  Hence, the rigid-perfectly plastic 
bridging law of the generic i-th fiber is characterized by an ultimate force iPF ,  in traction (and iPF ,  in compression), 

whichever of them exhibits the minimum absolute value [11, 12]. 
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Figure 1: Schematic of the model. 

 
During the general loading process, brittle catastrophic fracture or compressive crushing of the matrix are disregarded.  
Further, no edge crack is assumed to develop in the upper part of the beam.  Stable fatigue propagation of the initial crack 
due to cyclic loading is beyond the scope of the present investigation. 
Since the problem being examined is statically indeterminate, the unknown fiber reactions iF  (positive if the fiber is 

under tensile loading) on the matrix can be deduced from n kinematic conditions related to the crack opening 
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displacements iw  at the different fiber levels [11].  If iF  is equal to iPF , , the force of the i-th fiber becomes known, and 

the crack opening displacements are hereafter shown to depend on such a value.  Since the matrix is assumed to behave in 
a linear elastic manner, the crack opening displacement iw  at the i-th fiber level is computed through the superposition 
principle 
 

Fλλλw MN  MN ,                                                                (1) 
 

where  Tnww ,...,1w  is the vector of the crack opening displacements at the different fiber levels, and  TnFF ,...,1F  is 

the vector of the crack bridging forces.  Further,  TnNN w,...,1Nλ  is the vector of the compliances related to the axial 

force N,  TnMM w,...,1Mλ  is the vector of the compliances related to the bending moment M, whereas λ  is a 
symmetric square matrix of order n, whose generic element ij represents the compliance ij  related to the i-th crack 
opening displacement and the j-th fiber force (see Ref. [11] and the analytical expressions of SIFs in Ref. [15], pp. 52, 55, 
71). 
The incremental form of the governing Eq. 1 is (summation rule for repeated indices holds) 
 

jijiMiNi FMNw     with  ni ,...,1 ,                                        (2) 
 

where dot symbol indicates time derivatives, with dtFF ii    and dtww ii   .  If the general i-th fiber is in the elastic 

domain, the corresponding increment of crack opening displacement iw  is null, namely if 0,  iiPi wFF  .  On the 

other hand, if the general i-th fiber is yielded ( iPi FF , ), the following two alternatives are possible: 00  iii wFF   or 

00  iii wFF   (plastic-to-elastic return).  In other words, we have 
 

0ii wF    if iPi FF ,  and 0iF ;         0iw  otherwise.                                              (3) 
 
 
SHAKEDOWN AND THE MELAN’S THEOREM IN PLASTICITY 
 

et us consider a body made of an elastic-perfectly plastic material.  Strain is additively decomposed into elastic and 
plastic parts 
 

p
ij

e
ijij                                                                                                               (4) 

 

The plastic strain is defined by both a convex yield condition 
 

0)( ij                                                                                                             (5) 
 

and the associated flow rule 
 

ij

p
ij 





                                                                                                              (6) 

 

where   indicates a non-negative scalar plastic multiplier ( 0  if 0  and 0 ).  The Drucker’s stability postulate 
holds [16] 
 

  0*  p
ijijij     ijij  ,*   such that    0* ij  and   0ij                                                  (7) 

 

The elastic-plastic body under consideration is submitted to cyclic external loading with period T, such that an initial 
transient stage (leading to some possible mean values of load components) is followed by a cyclic stage.  At a certain 
instant, the material attains (possibly asymptotically) a steady state, where the stress becomes a periodic function with 
period equal to that of the external loading, that is, for a sufficiently high value of t  (possibly for t ), we get 

   Ttt ijij   .   If plastic strain does not occur in the steady state but it is limited to an initial transient stage, 
shakedown (or adaptation) occurs. 
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Shakedown conditions can be ruled out if one considers the linear elastic response e
ij  of the body under the external 

loading, namely the stress state, satisfying the equations of elastic equilibrium, that would develop in the body if its 
behaviour were perfectly elastic.  Such a time-varying stress state  te

ij ,x , function of the material point position x , is 
linked by a one-to-one relation to the load path.  If a body (submitted to a given periodic load path) shakes down, clearly 
there must exist (necessary condition) a time-independent self-balanced stress  xp

ij   ( 0, 
p

iij  in V  and  0i
p

ij n  on FS , 

where V is the body volume and FS  is the body surface where tractions are prescribed)  such that 
 

     0,  xx p
ij

e
ij t   t,x                                                                                                         (8) 

 

The Melan’s theorem [14] supplies a sufficient condition for shakedown, and its statement is as follows: for given load 
path, an elastic-perfectly plastic body will shake down if and only if there exists a time-independent self-balanced (residual) 
stress  xij  ( 0, iij  in V and 0iij n  on FS ) that nowhere violates the yield criterion when superimposed onto the 
elastic stress in equilibrium with the given load path, that is (note the strict inequality): 
 

     0,  xx ij
e
ij t   t,x                                                                                                       (9) 

 

An evident advantage of the Melan’s theorem is that the actual time-dependent elastic-plastic stress in the body does not 
have to be determined and, hence, no incremental analysis is required to assess shakedown conditions.  Instead, the elastic 
solution  te

ij ,x  is superimposed on a self-balanced stress distribution (which may be different from the actual one 
caused by the given load path) so that the resulting stress state is admissible with respect to yielding. 
Usually the external load path is not known a priori so that, typically, a family of load paths is considered by defining a 
load domain given by the max/min values of each single load component.  In more details, let the vector )(tP  collect the 
independent load components max,)( hh Pt  ( ph ,...,1 ) with )(th  time varying between min,h  and hh  max, .  
Therefore, the load domain is bounded by hyperplanes, and the shakedown condition in Eq. 9 has to be verified at a finite 
number of points corresponding to the vertexes, intersections of the hyperplanes.  If a proportional variation of the 
ranges of load components is assumed (   p...1 ), the load domain varies in a homothetic manner, defined by the 

single load parameter  .  In such a case, the maximum value of the load parameter   defines the shakedown limit. 
Extensions of the classical shakedown theory (concerned with elastic-perfectly plastic materials in small displacements and 
strains) to more general material models (such as to include non-linear hardening, rate-dependence, damage, non 
associative plasticity) and to large displacements have been formulated (e.g. see Ref. [17]).  Investigations on shakedown 
conditions in elastic contact problems with Coulomb friction can be found in Ref. [18]. 
 
 
SHAKEDOWN LIMIT IN THE CRACK BRIDGING MODEL 
 

hakedown theory related to plasticity material model can be extended to the case of the present crack bridging 
model on the basis of the following similarities.  As a matter of fact, the stress state obtained from a linear elastic 
analysis can be regarded as the fiber forces due to zero crack opening displacements, that is, the forces which are 

proportional to the applied loads (axial force N(t) and bending moment M(t)).  Hence such a force vector )()0( tF  can be 
determined by equating the right-hand member of Eq. 1 to zero: 
 

 )()()( 1)0( tMtNt MN λλλF   .                                                                                              (10) 
 

Then, the time-independent residual stress corresponds to the fiber force vector )~(wF  due to non-zero crack opening 
displacements w~ , namely according to Eq. 1: 
 

wλF ~1)~( w .                                                                                                                         (11) 
 

The sufficient condition of the Melan’s shakedown theorem can hence be written as follows: 
 

p
wt FFF  )~()0( )(  t .                                                                                                                      (12) 
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Considering the case of the rectangular load domain defined by max)()( NttN N  ( NNN t   )(min, ) and 

max)()( MttM M  ( MMM t   )(min, ), the condition of Eq. Eq. 12 has to be verified at the 4 vertexes (e.g. see the 

cross path in Fig. 2).  If one assumes a homothetic variation of the load domain, a single load parameter   MN  is 
considered, and the shakedown limit is obtained from the following optimization procedure: 
 

 
 

 0~,
max




w
SD                                                                                                                         (13) 

 

such that 
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                                                                   (14) 

 
 
ILLUSTRATIVE EXAMPLE 
 

or illustrative purposes, we apply the model being presented to a fiber-reinforced edge-cracked beam under a 
rather general periodic traction-flexure loading.  The aim is twofold: on one hand, we want to illustrate, by 
comparing results obtained from incremental analysis with those related to the optimization procedure, the 

correctness of using the Melan’s theorem as a sufficient condition for shakedown.  On the other hand, we want to 
describe, via the optimization procedure, some features of the shakedown traction-flexure domain as the fiber distribution 
along the beam height and the crack depth are made to vary. 
The cracked section of the beam is exposed to a combination of sinusoidal axial force and bending moment of periodicity 

T2 : 
 









 t
T

M
MtM

2
sin

2
)(    and   






 


 

t
T

N
NtN

2
sin

2
)(                                                            (15) 

 

where   2minmax MMM   and   2minmax NNN   are mean values of )(tN  and )(tM , and minmax MMM   and 

minmax NNN   are their ranges.  By varying the phase angle  , different load paths enveloped by the rectangular load 
domain defined through the min/max values of )(tN  and )(tM  can be obtained.  Considering the case of 0  for 
   TktTk 1222   and   for   kTtTk 212   with ,3,2,1k , a cross load path passing through the four 
vertexes of the rectangular load domain is generated.  Figure 2 shows a sample of time histories for cross and elliptic (out-
of-phase, with 3  ) load paths characterized by the same min/max limits. 
 

 
 

Figure 2: Bending moment-axial force ( NM  ) elliptic and cross load paths in the case of 25.0/ maxmax NM . 
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The case of a fiber-reinforced concrete beam with height b  = 0.3m  and  width t  = 0.2m is examined.  The Young 
modulus E of concrete is assumed to be equal to 30 GPa.  Further, the concrete compressive strength and fracture 
toughness are assumed to be as high as to avoid crushing and brittle fracture, respectively.  Equally-spaced long 
unidirectional glass fibers characterized by diameter of 30μm and tensile/compression strength of 2000MPa, are present 
in the matrix in a volume fraction equal to 20%.  Three strength distributions of fibers along the beam height are taken 

into account (Fig. 3), characterized by the same total ultimate force totpF ,  (where 



totn

i
pitotp FF

1
, , with totn  = total number 

of fibers along the height of the beam): (a) constant distribution; (b) linear distribution; (c) linear and symmetrical 
distribution. 
 
 

1
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Figure 3: Strength distribution of fibers along the height of the beam: (a) constant distribution; (b) linear distribution; (c) symmetrical 
and linear distribution. 
 
Let us assume totpFN ,min 2.0  and  6minmin bNM  , and a homothetic variation of the rectangular load domain through 

the single load parameter   ( MN   ).  By means of the optimization procedure in Eq. (13), the shakedown limit 
can be obtained as the ratio maxmax / NM  is made to vary.  This leads, in the case of relative crack depth   = 0.1, to the 
normalized Bree-like diagram     minmaxminmax NNMM    in Fig. 4, where the elastic domain is also sketched.  The 
results determined for the three fiber distributions ((a), (b) and (c)) are compared in the same plot.  Note that the ratios 
  minmax MM  and   minmax NN  correspond to the inverse of the fatigue loading ratios of bending moment and axial 
force, respectively, at elastic limit or shakedown limit. 
In order to demonstrate the validity of the optimization procedure for determining the shakedown limit, the cross and 
elliptic load paths are analysed by means of the incremental procedure being presented.  The ratio maxmax / NM  is assumed 
to be equal to 0.25, and the load parameter   is taken equal to SD  and to SD05.1 .  The (c) fiber distribution along the 
height of the beam is examined.  In Fig. 5, the bridging force against crack opening displacement curves of the 1st fiber 
(bottom) and 50th fiber (top, nearest to the crack tip) for SD   and SD 05.1  are plotted.  It is shown that all the 
fibers shake down (the 2nd fiber to the 49th fiber are in intermediate conditions with respect to the 1st fiber and the 50th 
fiber) when SD   regardless of the characteristics of the load paths being considered.  On the other hand, for 

SD 05.1 , alternating plasticity with energy dissipation in hysteretic loops at the fiber levels takes place for the cross 
path but not for the elliptic one.  This confirms the correct definition of the shakedown limit through the optimization 
procedure.  Further, this corroborates that the proposed application of the Melan’s theorem yields a sufficient condition 
for shakedown in the case of the load paths contained in the rectangular load domain, but no information is offered in the 
case of the load paths outside such a domain. 
In Fig. 6, the shakedown domains for the three fiber distributions in the case of intermediate crack depth (  = 0.3) are 
compared.  It can be seen that, as the axial force increases, the critical fiber dictating shakedown limit condition tends to 
be different from the bottom fiber  so that, for instance, the shakedown bending moment at a certain axial force is smaller 
for the distribution (c) than for the distribution (b). 
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Figure 4: Bree-like diagram showing the elastic domain and the shakedown domain for the (a), (b) and (c) fiber distributions with 

1.0 . 
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Figure 5: Bridging force vs crack opening displacement in the case of 25.0/ maxmax NM : (a) μ = μSD and cross load path; (b) μ = 
1.05μSD and cross load path; (c) μ = μSD and elliptic load path; (d) μ = 1.05μSD and elliptic load path. The symmetrical and linear 
fiber distribution is considered 
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Figure 6: Shakedown domain for intermediate crack depth ( 3.0 ) and different distributions of fiber strength 

 
 
CONCLUSIONS 
 

n this paper, a bridging crack model for a fiber-reinforced brittle-matrix composite beam under oscillatory axial force 
and bending moment is presented.  A simple rigid-perfectly plastic bridging law due to fibers is considered.  By 
drawing a parallel with the well-known problem of shakedown in elastic-perfectly plastic monolithic bodies, it is 

shown that the classical Melan’s theorem of limit analysis can successfully be applied to the present model, where the 
crack opening displacements at the fiber levels play the role of the plastic strains in monolithic bodies.  For illustrative 
purposes, the results of the optimization procedure based on the Melan’s theorem are verified for a fiber-reinforced 
concrete beam by performing a step-by-step incremental procedure.  Further, some features of the shakedown domain are 
shown as the crack depth and fiber strength distribution are made to vary. 
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