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ABSTRACT. Shape optimization of components subjected to multiaxial fatigue is 
considered. In these cases the application of static optimization algorithms, generally 
based on Von Mises stress, is no more applicable. In this paper an optimization routine 
for multiaxial fatigue is developed on the basis of the CAO technique proposed by 
Mattheck. According to a criterion for fatigue strength estimation of notched specimens 
made of ductile materials and subjected to mutiaxial fatigue: Liu-Zenner. Abaqus 6.8-
1is used as the commercial software to develop finite element simulation and Python 
2.4and Matlab2007 are used as the subroutine programs. 
 
 
INTRODUCTION  
 

Fatigue failure is the most experienced failure in many fields such as automobile and 
aerospace industry. It is possible to avoid fatigue failures by simple over dimensioning 
the dangerous notches which afflict the components, but the global weight and the 
performances of the components will results worst. Another, more attractive way to 
improve the fatigue behaviour of machine element is the definition of procedures able to 
lead toward the optimum design of notched parts. In the present study, computer aided 
optimization (CAO) [1] is used as an optimization method to increase the fatigue life in 
notched components.Previously, Peng et al[2] have tried to optimize the notches based 
on other method for uniaxial loading, Wilczynski[3] has tried to optimize the shape 
under multi axial fatigue loading for crack propogation.  

The present approach is composed of five steps. Roughly speaking, it is based on 
simulating the stress field in the notch zone namely “Growth Zone” with temperature 
and decreases the elastic module in that zone simultaneously. Abaqus 6.8-1[4] is used as 
commercial software to apply this method. In the original CAO method which is 
developed by Mattheck [1], the Von-Mises stress is the criterion for calculating the 
stress concentration factors and also the stress which should be transformed to 
temperature. Liu-Zenner is the chosen criterion [2] due to the fact that based on the 
litreture [6, 7] the fatigue prediction of this method in different types of loading is 
reasonable. Liu-Zenner is an integral criterion based on the average value of the shear 
and normal stress acting on each material plain; thus the exact definition of shear stress 
on each plane is required. In this paper, Papadopoulos definition [8] of the amplitude 
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and mean value of the shear stress acting on the plane is used. This definition is almost 
free from any ambiguity because they are based on the construction of a unique 
minimum-circumscribed circle to the load path described by the shear stress on the 
critical plane. As it is mentioned, in order to apply the criterion, it is necessary to 
calculate the integrals over the planes in Liu-Zenner method. Thus the space, obviously, 
should be divided into several planes. This division should be implementable on 
numerical software. The Webber [9] method which deals with the way to obtain a 
homogeneous distribution of planes having almost the same area and also the 
determination of the smallest circle surrounding the loading path is implemented. At the 
end, an example based on the developed method is represented. Results obtained from 
the numerical examples indicate that distribution of the Liu-Zenner [5] calculated stress 
on the notch area in comparison with the original shapes is significantly imporved 
leading to decrease and even in some cases to avoid stress concentration on the notch.  
 
 
OPTIMIZATION PROCEDURE 
 

The paper is based on a method introduced by Mattheck [1] which is derived from 
the natural phenomenon of adaptive growth in trees. The CAO method [1] is briefly 
described in the following steps. The flowchart is also illustrated in Figure 1. 
1. A finite element model of the structure representing the desired appearance of the 

component is produced by Abaqus 6.8 [3].Fatigue loading is applied by introducing 
the stress amplitude and phases of the harmonic function; consequently, the history 
of stress tensor through the time will be obtained on each node.   

2. Based on the FEM results the Liu-Zenner [5] stress for each node will be calculated 
by using Python 2.4 [10]. The strength of the specimen could be estimated based on 
the calculated fatigue limit.   

3. The computed stresses are then substituted by a virtual temperature distribution. In 
this way the points which showed previously highest mechanical stresses would be 
the hottest points in the component. Moreover, the modulus of the elasticity in the 
upper layer is set to only 1/400 of the initial value. Thus there would be a fictitious 
soft layer with particularly high temperature at original overloaded zones and rather 
cold layers in the unloaded region. Before applying and changing the stress field into 
temperature field, it should be noted that without considering the ambient 
temperature the notched area will always be increased.  

4. In the next FEM computation which considers just the thermal loads, the previous 
mechanical load (tension) is set to zero. Moreover, only the soft upper layer will 
have a thermal expansion factors α>0. During this computational stage with only 
thermal loading, the ‘pudding-soft’ upper layer expands corresponding to its 
temperature distribution, and that is the Growth Zone which previously experienced 
the highest loads (in computation step 2) at this stage tolerates the highest 
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temperature and expands most clearly, i.e. it grows more. All the prodcedure is 
controlled by Matlab 2007 [11]. 

5. The structure already improved by growth in computation step 4 is already shape-
optimized to some extents, and occasionally one such growth cycle is sufficient. This 
is checked by again setting the E-modules of the soft layer at the value of the basic 
material and starting at step 2 with a new FEM computation under purely mechanical 
loading, which will deliver a more homogeneous stress distribution with greatly 
reduced notched stresses. The computation loops 2-5 are run through repeatedly, till 
the stress concentration factor stops changing due to fact that construction conditions 
forbid further growth.    

 
Figure 1: Flowchart of proposed CAO method 

 
 
MULTI AXIAL FATIGUE CRITERIA 
 

Finding fatigue limit under multi axial loading has been one of the most controversial 
issues in the last century; due to the fact that, without omitting and simplifying the 
problem condition, most of the structures in real life, which are under the cyclic load, 
suffer from the multi axial fatigue damages. There are many different criteria from 
different categories which have been proposed to find the fatigue limits.  The Liu-
Zenner is the chosen criterion which is described briefly in the following part. 
 
Liu-Zenner criterion [2] 
 

The Liu-Zenner [5] multi-axial criteria of integral approach and of the critical plane 
approach can be derived as special cases from the general fatigue criteria. Based on the 
literature [6, 7] the estimated life time according to this criterion shows appropriate 
results in different loading condition. The Liu-Zenner multi-axial criteria of integral 
approach and of the critical plane approach can be derived as special cases from the 
general fatigue criterion. The Eqs (2) and (3) are based on Figure 2. In the following 
equations The sua,s and  sua,t, stress amplitudes, are calculated in each cutting plane 
from the time function of the stress components.   
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For calculating the failure condition the values of fatigue limit for pure bending , 
fatigue limit for pure torsion loading  τ , fatigue limit sW(R=0), tW(R=0)  are necessary. 
The fatigue limit under pulsating tensile stresses   is evaluated by assuming a 
mean stress sensitivity factor equal to 0.2 and for fatigue limit under pulsating torsion 
stress the same assumption in [7] is used. 
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Definition of Shear Stress 

In integral type approaches the accurate definition of shear stress seems the most 
important part. The evaluation of the amplitude and mean value of the shear stress 
acting on the critical plane should be resolved satisfactorily for proportional cyclic 
loading conditions. The situation is much more complex regarding the definition of the 
amplitude and mean value of the shear stress for non proportional loading. The 
complexities arise from the fact that, unlike the normal stress vector which conserves its 
direction, the shear stress vector τ changes in magnitude and direction inside each load 
cycle. The minimum-circumscribed circle (MCC) to a plane polygon P is: either one of 
the circles drawn with a diameter equal to a line segment joining any two vertices of P 
or one of the circum circles of all the triangles generated from every three vertices of P. 
This method is presented for the first time by Papadopoulos [8].  
 
 
APLICATION PROCEDURE: 
 
In order to apply the novel CAO procedure, three types of commercial software have 
been used. The algorithm of implementing the mentioned steps is as follows: 

1. The model with all the boundary condition, define loads, etc is solved in 
ABAQUS 6.8 [4]. 

2. For each integration point stress tensor in each time increment is read; for 
example if the overall time is one second and time increment is 0.01 for 200 
elements; 2000 stress tensor will be read from FEM results.  

3. the following steps, which have been done with Python 2.4[10], should be done 
for each elements: 

a. Set of the normal vector n which is calculated based on Weber 
division[9]  method is calculated 
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b. By multiplying the stress tensor for that element in every single time 
increment and each single vector in n, calculate the normal and shear 
stresses on each plane in space. 

c. Find the MCC based on the modified randomized method [12] for the 
load path which was calculated in the last step.  

d. Calculate the mean and alternative normal and shear stressed for each 
normal vector in n. 

e. Calculate the Liu-Zenner integral based formula number 1 to 7 
4. Step number 3 should be continued for each element.  
5. The Liu-Zenner [5] stress, calculated in the previous steps, should be calculated 

on each node; this step is done by Python [10] attached to Abaqus [4].  
6. Apply the node stress as the temperature. And calculate the displacement due to 

the applied temperature. Before this analysis, the elastic modules should be 
reduces for example into 1/400th of the main elastic modules.  

7. Make a new a model by applying the obtained displacement on the nodes; 
continue these steps in order to reach the optimum results based on the design 
specification. This step is done with Matlab 2007 [11].  
 

AN EXAMPLE OF IMPLEMENTATION 
 
The following notch has been chosen for an example to implement the method. In 
Figure 3a the main geometry of the notch is presented. The applied forces are presented 
in Eqs 10. The loading is 90 degree out of phase.  

T= 75 Sin8t (Nm) 
F=35 Cos8t(kN) 

(10)

In Figure 3b the FEM model in Abaqus is shown. The Quadratic 20 nodes elements are 
used for notch and tetrahedral 10 node elements are used for the rest. Material 
properties are limited to elastic module and Possion ratio for the simple steel. 
 

 
Figure 3: a)The original geometry of the selected Notch, b) The FEM model with the 

described mesh 
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In Figure 4 the optimization evolution in the notch profile after 5, 10, 15, and 20 
iterations is presented. In Figure 9 the changes in calculated stress based on Liu-Zenner 
method through the notch profile for each node is demonstrated. Based on the results for 
this example it can be concluded by implementing this approach the equivalent stress 
after 20 iterations from 900 MPa is reduced to 400 MPa whereas the profile based on 
the Figure 5 did not change dramatically.  

 
Figure 4: The Optimization evolution of notch geometry 

 
The iteration loop stops as soon as the difference of the obtained results of two 
successive iterations is less than the defined tolerance. In the presented example, based 
on the results, the differences between iteration number 19 and 20 is less than the 
defined tolerance; thus the optimization can be stopped. 
 
 

 
Figure 5: the Liu-Zenner stress changing through the iteration numbers 
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CONCLUSION 
 
A novel optimizing method has been presented for modifying the notched geometry 
under multi axial fatigue loading. Based on the obtained results it can be inferred that 
this method could be effective also for different geometries with different kind of 
loading.  The method has been applied to many different geometries and loading 
conditions just one of which has been presented in this article. According to the 
obtained results the method was found to be applicable to a wide range of loading and 
geometry combinations. Furthermore it was very quick with respect to number of 
iterations.  
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