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ABSTRACT. The aim of the present paper is to interpret theoretically three bending fatigue 
test results for weak fiber\matrix interface composite. Composite materials such as 
oxide/oxide composites with brittle fiber and brittle matrix are perspective modern materials, 
which can be used in high temperature regimes. Low steady-state creep rates and high crack 
propagation durability are two sides of their manufacture problem. Weak fiber/matrix 
interface stimulates high energy dissipation near the crack tip due the pull-out mechanism 
but very weak interface provides an interesting and dramatic effect of  its rapid degradation 
during the 5-10 cycle loadings. So, we would like to propose a model of cyclic interface 
degradation and to analyze optimal conditions for fracture energy dissipation in 
brittle/brittle composites due the fibers pull-out. 
  
 
INTRODUCTION 
 

     

Multiaxial fracture model was built up to 
theoretically evaluate the behaviour of 
composites with the weak (island-like) 
fiber/matrix interface. Three bending test leads 
to the micromechanical model of interface 
degradation is described and experimental data 
of rapid increasing of steady-state rate of the 
displacement of an oxide/nickel composite 
specimen is analysed.  

Changes in the interface strength during a cycle 
loading and, correspondingly, changes in the 
creep resistance of a composite are described 
due the abrasive deterioration process in the  
fibre/matrix interface. Fatigue strength 
estimation at a specified number of loading 
cycles is obtained.  

Volume of energy dissipation due the pull-out 
mechanizm for different stresses is obtained. 
Area of effective maximum energy dissipation 
depending on the weakness of interface is 
estimated. In this case pull-out energy due the 
multiaxial fracture in brittle-brittle composites 
can provide such dissipation effect as crack tip 
plastic zone in metals.  
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THE MODEL 
 

Abrasive deterioration model. 
Let us consider a cylindrical piece of the fiber 
extended with tension Р from a cylindrical site of a 
matrix, fixed from above. Fiber and a matrix forces 
by Coulomb's law of friction due the normal 
tensions in fiber/matrix boundary. The primary 
normal tension appears due the manufacture 
process and is considered set. During the pull-out 
process normal tensions are  redistributing and the 
fiber/matrix contact surface is deteriorating 
simultaneously, that leads to change of boundary 
conditions and further friction weakening.  
 

Coulomb's law of friction. qS ⋅= µτ  
Depth of deterioration of a matrix in a surface of contact corresponds to model of abrasive 

deterioration:   ∫=
v

SiW dvlu
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Distribution of normal pressure in a direction of an axis 0y goes from: 
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For any cross-section we have classical problem:  
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with boundary conditions depending on depth of deterioration:   
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Therefore we obtain normal tension dependence of normal stresses and depth of 
deterioration:   
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Using following 
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finally we obtain the defining equation 
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We can solve this equation numerically or can involve simplifications such as: 

Linearization for tension q:      )()(),( uMyuKuyq +=  

Thus we have: 
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Solution of this system can be obtained analytically: 
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The second simplification is averaging of normal tensions q by y, after that we have 

∫−=
v

duuqAquq
0

101 )()( ,   therefore  Auequq −= 01 )(

 

Pull-out energy dissipation. By means of the two 
cylinders shift problem solution  received in the 
first part we can obtain  energy dissipating 
definition due the fiber pull-out mechanism. Let us 
consider a unidirectional brittle/brittle composite 
and and classic cross-plane crack, r - is fiber radius, 
Lp – is average length of broken fiber due the crack 
approach. Fiber strength is random value and 
depends on defects randomly distributed along a 
fiber and presented by Weibull distribution. 
τ s - is initial stress along the pull-out fiber. 
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Stresses in the fiber we take like in [1] 
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After that we analyze probability of fiber breakage due the pull-out out of the matrix 

( )

( )

( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−==

+

+

∫∫

1

2

exp
12

2

exp1

)(1exp)(1exp1)()(

00

1

0
1

0

1
1

1

000 00

βσ

τσ

βστ

στσ

σ
σ

σ
σσ

β

β

β

β
β

ββ

L
R
LLL

R
LL

R
LL

dtt
L

dtt
L

LPP

D
CPD

D

C
D

CD

L

L

L

PC

P

D

D

,

dy
dy

ydP
yL

P

C

L

p ∫ ==
0

~

1
2

)(
σσ  

Finally, we can calculate an pull-out energy dissipation range and determine the optimal 
conditions for its maximum approaching: 
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An example calculation for concrete data  

Fiber Matrix Specimen 

r m4105.0 −⋅ mE Pa810 CL m110−

 
 

 
  

0σ  Pa8105 ⋅  τ  Pa6105 ⋅
 

0L m210−
fV   

3
1  

β  3,6 mV  
3

2  

fE Pa910
 

 

 

 

 

Area of effective maximum energy dissipation 
depending on the weakness of interface is 
estimated. But the certain shift in interface 
properties can completely reduce this effect. 
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Average length of broken fiber and, 
correspondingly, pull-out lenth in 
unidirectional composite with cross-plane 
crack is estimated. The range of optimal 
Weibull parameter β is established as 
2<β<2,5. 

 
So, we can compare maximum value of pull-out energy dissipation and energy of ceramic 
matrix destruction.  

Ceramic matrix destruction energy Fiber pull-out energy 

 SiC 2/10 mJ  MPaMPa 2,501 == τσ  2/100 mJ  

CAS 2/25 mJ  MPaMPa 1,1001 == τσ  2/150 mJ  
 
 

Interface degradation.  
Let  is a distance of fibre-matrix 
debonding area with shear stress defined by 
the Coulomb’s friction law. Leading the (1) 
we can get normal stresses on the fiber 
surface.  
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and fiber-matrix displacement will be: 
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So, we can get a foolowing system: 
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If we numerically solve this system, we 
can obtain the level of interface 
degradation: 
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where - is interface continuity, included in 
steady-state creep rate conditions in the 
form [7]. 
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DAMAGE FUNCTION 
 
Let us consider a damage function: ),,( 0yyxω , depends on the of fiber’s damage level. 
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0)0,( =xω , where x – axis along the specimen within the three bending test, y – cross-
section coordinate, - is neutral axis displacement. 0y
Steady state creep rate regime depends on damage function: 
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Within the flat crossections hypothesis we obtain longitudinal stresses: 
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For the determination of ω  we need to solve the system:  
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Following the suggested damage function form , we can determine the 
constants 
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Functions  are reduced to the constants  due the the flat crossections 
hypothesis. 
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CONCLUSIONS  
Thus, fiber pull-out process at the given stage seems very perspective for manufacturing  new 
generation composite materials. However course of this process strongly depends on 
properties of a material, in particular fiber coating and distribution of fiber strength 
properties. For example, as shown, fibers without defects are less perspective than fibers with 
certain defects distribution. 
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