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ABSTRACT. Due to the complexity both in the geometry and in the loading conditions, 
a multiaxial stress state will arise in most engine parts. The loads on a medium speed 
diesel engine are dynamic with billions of  cycles. However, the loads are usually quite 
stable and many components are therefore sized for a nominally infinite life. Some 
years ago it was decided to develop a better understanding of multiaxial fatigue and to 
develop appropriate design tools. After an examination of different alternatives, the 
critical plane criteria according to Findley and Dang Van were chosen as a base for 
this development work, although, especially the Findley criterion requires much 
computing. Care had therefore to be taken to create efficient algorithms. Some 
experience has now been gained from the use of these criteria. The Findley criterion 
has proved to be quite accurate for most practical purposes. The estimates obtained by 
it  agree well with both fatigue test results and with the experience from the obser-
vations of failures in the field. However, some difficult problems in its application 
remain. Among these problems are, e.g., how this criterion should be applied in 
situations with much yielding as in thread roots. Also the transformation to an 
equivalent uniaxial stress needed for the Palmgren-Miner type cumulative damage 
analysis is problematic in some special loading conditions.  
 
 
INTRODUCTION 
 
Figure 1 shows a cross section of a big medium speed diesel engine. The complicated 
geometry of many of the engine parts is clearly visible. This is true, especially, for the 
cast parts as the cylinder head, engine block and liner. Forged parts, as the crankshaft 
and  connecting  rod,  have  also  an  intricate  shape  with  sharp  notches.  Already  this  
complexity in geometric shape will give birth to a multiaxial stress state in many critical 
points. The many different load types acting in the engine will further strengthen this 
multiaxial effect. Typical loads on the crank mechanism are the firing pressure and the 
inertia forces. In addition to the dynamic stresses caused by the firing pressure, 
temperature stresses arise in the cylinder head and liner every time the engine is started. 
This produces a highly multiaxial stress state in these components. Moreover, these 
stresses have variable amplitudes, and a situation with cumulative damage is initiated. 
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Because the operational life of this kind of engines should be at least 150 000 hours, it 
means that the number of high cycles can be counted in billions. In marine applications 
where the engine is used for main propulsion, even the high cycle stresses caused by the 
firing pressure and inertia forces can vary with the required power output. The number 
of starts and stops can be tens of thousands. As a contrast, in power plant operation the 
power output is mostly high and nearly constant and the number of starts and stops is 
considerably lower. 
 Usually  the  acting  stresses  are  proportional.  However,  in  some  cases  they  can  be  
nonproportional. This is true, especially, for vibrating engine parts. The diesel engine 
generates a multitude of exciting frequencies which can cause resonance problems. 
Moreover, impulsive or near to impulsive excitations are also present causing transient 
decaying vibrations in some parts. The resulting load in, e.g., a crankshaft or a camshaft 
can therefore partly consist of superposed vibrations with many different out-of-phase 
frequencies.  
 Less than a decade ago the so-called signed von Mises criterion was usually applied 
in the evaluation of multiaxial fatigue. In some cases the principal stresses were used, 
even neglecting some possible rotation of the principal axes. The accuracy of both these 
pseudo-criteria will vary a lot depending on the situation. Moreover, these criteria have 
special points where the result is not unique. In the signed von Mises criterion the sign 
of  the  mean stress  is  chosen  to  be  the  same as  the  sign  of  the  trace  of  the  von  Mises  
mean stress matrix. Sometimes the trace of the matrix is close to zero and even a small 
shift of some normal stress component can cause the mean stress to jump between a big 
negative or positive value. To apply these criteria to nonproportional load cases seems 
therefore even still more risky. The need to find accurate, testable and reliable 
multiaxial fatigue criteria for the sizing of the engine parts is therefore obvious.  
  
                 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

 
Figure 1. Cross section of a medium speed diesel engine. 
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In the beginning of the 2000’s, a study of different multiaxial fatigue criteria began at 
the authors’ company. Because of the high number of loading cycles in an engine, the 
focus was put on examining critical plane criteria as the Findley, Dang Van, 
Papadopoulos and McDiarmid criteria [1, 2 and 3]. It was thought that these criteria 
were suited for a fatigue analysis aiming at a nominally infinite life. Below a summary 
of these investigations, a short description of the program development work as well as 
results and conclusions will be given. 
 
 
CHOICE OF CRITERIA 
 
There exists a huge number of different suggested multiaxial fatigue criteria. The 
authors always give good arguments in favour of their favourite, and an objective choice 
is difficult. This investigation was limited to the four critical plane criteria mentioned 
above. The critical plane means a plane in the stress space where the combined effect of 
the shear stress “amplitude” /2 or a and  a  fraction  of  the  normal  stress  n has its 
maximum. This combined effect is called damage and it should be below the allowed 
fatigue limit in shear. To be able to compare these criteria, a first crude computer 
program was created which conducted both proportional and nonproportional fatigue 
analyses. Although a lot of fatigue tests had been done, they were primarily uniaxial 
tests on plain or notched specimens and very little real multiaxial test data was at hand. 

A good multiaxial criterion should also provide accurate results for uniaxial stress 
cases. To begin with, the four investigated criteria were therefore applied on the results 
of some uniaxial fatigue tests. In all four criteria, except the McDiarmid, there are two 
constants that have to be determined. The outcome of uniaxial fatigue tests at two 
different stress ratios R, e.g., aR=-1 in fully reversed tension-compression and aR=0 for a 
stress fluctuating from zero to max, can be used to determine these constants. The 
investigated criteria and the corresponding equations to determine the constants are 
summarized in Table 1. 
 
 

Table 1. Examined criteria. 
Criterion Damage D Constant for normal n or 

hydrostatic stress h 
Fatigue limit in shear  
( tf af  and  , , ) 

Findley fk n
max2

 
1

0
2

2

412
1

aR

aR

kk
kk  21 1

2
kkf aR  

Dang Van 
afha tat )()(  

10

01

22
3

aRaR

aRaRa  
10

01

22 aRaR

aRaR
af

 

Papadopoulos 
max,max, ha  

10

01

22
3

aRaR

aRaR  
10

01

22 aRaR

aRaR  

McDiarmid t
R
t

n
m

max,
max

22
 a) 

maR

aR

R
t

4/12 1

1    or b)  
maR

aR

R
t

2/12 0

0  

277



A tested Haigh diagram for quenched and tempered steel is shown in Fig. 2. If the tested 
uniaxial median fatigue limit 509.6 MPa at the stress ratio R = -1 is used as load on the 
reference specimen, then the calculated safety factor should be close to one for a good 
multiaxial  criterion. In fact,  due to the small  notch, a peripheral  stress of 15.9 MPa is 
also generated at the critical point. The calculated “radial” safety factors defined as the 
ratio of the shear fatigue limit and the damage are shown in Table 2 for the four criteria 
in Table 1. The differences in these safety factors are of course small in this case. 
However, it will be shown later with uniaxial tests on sharply notched test specimens 
that these differences can become significant.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Haigh diagram for the reference specimen based on staircase test results 
considering the statistical size factor, Rabb [5], and tensile strength. 

 
 

Table 2. “Radial” safety factor at the tested uniaxial fatigue limit aR=-1 = 509.6 MPa 
Stress components at 

the critical point 
Criterion Safety factor SF 

 
Direction  of the 
critical plane [o] 

Findley 1.000 38.2 
Dang Van 0.992 45 

Papadopoulos 0.992 45 

- Axial stress 
a = 509.6 MPa 

- Peripheral stress 
f = 15.9 MPa McDiarmid a) 1.000     b) 0.885 45 

 
The result of these investigations is that the Findley criterion gives the best agreement 
with  test  results  in  all  tested  cases.  In  fact,  Dang Van [4]  stresses  that  the  hydrostatic  
stress used in his criterion is only a simplifying approximation of the normal stress on 
the critical plane. As illustrated in Fig. 3, only the Findley criterion is able to logically 
explain the anisotropy found in uniaxial tests between specimens with axial and 
transversal grain flow.  

The Findley criterion works reasonably well also when applied to nodular cast iron 
components. A Haigh diagram for EN 1563 – GJS-500-7 tested on plain specimens is 
shown in Fig. 4. The fatigue limit of notched specimens in the same material was also 
tested at fully reversed tension compression giving a biaxial stress state in the notch. A 
summary of the results of applying the four examined criteria to the tested fatigue limit 
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Figure 3. Findley criterion is consistent with the anisotropy found in the fatigue limit. 
 
for the notched specimen is given in Table 3. Again, the Findley criterion gives 
excellent agreement whereas the other three criteria are quite inexact. The main 
drawback with the McDiarmid criterion is the seeming ambiguity or that it provides 
different safety factors depending on at which mean stress the uniaxial fatigue limit has 
been determined. The previously used signed von Mises criterion underestimates clearly 
the actual safety factor, although it gives a somewhat better estimate than the one 
calculated with the Dang Van and Papadopoulos criteria.  
 Also when these criteria were applied to the results of a fatigue test on tubular 
specimens of GJS-500-7 in torsion, only the Findley criterion could provide reasonably 
accurate estimates, see Fig. 5 and Table 4. The values in Table 4 are only indicative 
because only 9 specimens were used at stress ratio -1 and even 6 specimens at stress 
ratio 0 in the test of the shear fatigue limit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Examined criteria applied to the tested fatigue limit of a notched specimen. 
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Table 3. Safety factor of the notched GJS-500-7 specimens at the tested uniaxial fatigue 
limit aR=-1 = 251.1 MPa 

Stress components at 
the critical point 

Criterion Safety factor SF 
 

Direction  of the 
critical plane [o] 

Findley 1.001 25.8 
Dang Van 0.872 45 

Papadopoulos 0.872 45 
McDiarmid a) 0.993     b) 0.636 45 

- time 1: y = -254.9 and 
z = -53.2 MPa 

- time 2: y = 247.3 and 
z = 54.0 MPa Signed von Mises 0.893 - 

 
The tested shear fatigue limits are therefore rather inaccurate, and the statistical size 
factor given in Fig. 5 has not been applied in the evaluation of the values in Table 4. 

On the basis of these test results, it was decided to base the fatigue analyses of both 
steel and cast components in multiaxial stress states mainly on the use of the Findley 
criterion both for proportional and nonproportional load cases. Because the Dang Van 
criterion is widely used in Europe, it was decided to create an efficient algorithm also 
for this criterion to be able to compare the results if needed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Fatigue test in torsion of tubular specimens of nodular cast iron. 
 
 
Table 4. Examined criteria applied to the test outcome on tubular specimens in nodular 

cast iron EN - GJS 500-7 
Safety factor with tested fatigue limit as load  

Criterion Stress ratio R = -1 with tested fatigue 
limit in torsion af   183 MPa 

Stress ratio R = 0 with tested fatigue 
limit in torsion af   117 MPa 

Findley 0.934 1.133 
Dang Van 1.314 2.056 
Papadopoulos 1.314 2.068 
McDiarmid a) 0.700  b) 0.477 a) 1.096  b) 0.745 
Signed von Mises 0.733 0.631 
 

b) 
Local shear stress in the notch at a 
nominal torsional stress of 100 MPaa) specimen
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Aeff = 2278 mm2 (tension-compression)
with sr = 0.1 (relative standard deviation)

Ksize = 1.040 (torsion)
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Rm = 625 MPa
Rp0.2 = 338 MPa

Tested fatigue limit on the 
plain specimen in Fig. 4:

aR=-1 = 232.5 MPa

aR=0 = 153.3 MPa
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PROGRAM MULTIV2 
 
An efficient computer program called MultiV2 was created for an automatic execution 
of a multiaxial fatigue analysis according to the Findley, Dang Van and the traditional 
signed von Mises criteria on the stress output files of the ABAQUS finite element 
program. This program has also been presented at recent ABAQUS Users’ conferences 
[6]. The use of the Findley criterion in nonproportional load cases on large stress output 
files presents high demands on computer capacity. By discretizing the stress space with 
varying angle increments in a way that keeps the subsurface areas constant and by using 
the down-hill simplex optimization algorithm, it was possible to create a fast and user 
friendly program.  The shear stress range on the critical plane can either be determined 
as the distance between two time steps giving the maximum chord or as the diameter of 
the enclosed circle. 
 Although the Dang Van criterion is very easy and straightforward to use in 
proportional load cases, its use in nonproportional load cases requires the determination 
of the minimum radius of the hypersphere in 6- or 9-dimensional space that enclose the 
whole  stress  history.  This  is  of  course  a  demanding  task,  and  to  facilitate  the  
programming work a commercial subroutine miniball that can be downloaded from the 
internet  was  used  [7].  Usually  the  use  of  a  6-dimensional  space  gives  the  maximum  
damage and should be preferred. 
 A still unclear problem is how to calculate exactly the multiaxial damage in the 
plastic domain. The Haigh diagrams in Figs. 2 and 4 show that the slope of these 
diagrams change in this domain. However, the Findley criterion is given as a straight 
line, as shown in Fig. 6, with its slope determined with two values from the linear part 
of the Haigh diagram. The introduction of the concept of equivalent uniaxial stress eq 
has  provided  a  tool  to  handle  also  the  plastic  domains  in  a  logical  way.  The  Findley  
criterion, like all other criteria, considers only the total damage caused by the shear 
amplitude and the normal stress. It is therefore clear that it is almost always possible to 
find an equivalent uniaxial stress state giving the same damage as the actual multiaxial 
case. By transforming the calculated damage to this uniaxial equivalent, it is possible to 
calculate a meaningful safety factor also in situations with yielding. It should also be 
noted that the safety factor is iteratively calculated as the needed reduction of the fatigue 
diagram to cross the actual stress point, see Fig. 6. 

It is also needed to change the multiaxial damage into an equivalent uniaxial stress 
when a cumulative damage analysis should be conducted. The transformation of the 
Findley damage is made using the following equations where  is the shear stress 
range on the critical plane, n its normal stress, and k is the constant for the normal 
stress sensitivity. This transformation seems also to work when eq,max exceeds the yield 
stress. The transformation is not of course defined if 4k n+  <0, but this happens 
rather seldom. 
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 a) 34CrNiMo6+QT b) EN – GJS-500-7 
Figure 6. Comparison of the safety factor according to Findley to the safety factor 

obtained using the equivalent uniaxial stress in different areas of the fatigue diagrams. 
 

It is seen in Fig. 6 that the safety factor calculated directly with the “linear” Findley 
criterion will deviate from the straight line in the plastic domain. Already for maximum 
stresses approaching the yield stress, the corresponding stress in the Findley diagram for 
nodular  cast  iron  will  go  beyond  the  valid  range.  However,  the  use  of  the  equivalent  
uniaxial stress seems to provide logical safety factors for all situations. 
 
 
DISCUSSION 
 
For an accurate sizing of the engine components, it is essential to account for the 
multiaxial stress state generated by the complex geometry and loads. Through a 
thorough assessment of some available critical plane criteria, it was found that the 
Findley criterion is one of the most suitable for sizing engine components. However, 
there is still some uncertainty about the correct use of this criterion, e.g. in situations 
with plastic deformation.  
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