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ABSTRACT. Multiaxial low cycle fatigue behavior of Ti-6Al-4V under 
non-proportional loading is studied. Strain controlled multiaxial fatigue tests at room 
temperature were carried out under uniaxial and non-proportional loadings using 
tubular specimen. The strain paths employed were three types of proportional and two 
types of non-proportional loadings. The former are a push-pull straining, a reversed 
torsion straining and a push-pull strain with mean axial strain. The latter are a circular 
straining where axial and shear strains have 90 degree phase difference and a reversed 
torsion straining with constant axial strain. In data correlation by Mises’ equivalent 
strain range, failure lives in the circler straining test were about 1/10 of that in the 
push-pull test. The failure lives in the reversed torsion with constant axial strain were 
affected by not only non-proportionality but also mean/constant strain. This study 
discusses the fatigue property and evaluation of failure life under non-proportional 
loading with mean strain. 
 
 
INTRODUCTION 
 
Ti-6Al-4V alloy is frequently used as a material in rotating aero engine because this 
material has properties of high strength, light weight and corrosion resistance. The 
rotating aero engine receives cyclic loading under thermal and mechanical stresses 
which cause multiaxial low cycle fatigue (LCF). Under non-proportional loading in 
which principal directions of stress and strain are changed in a cycle, previous studies 
have reported a drastic reduction in failure life accompanies an additional cyclic 
hardening, which depends on material [1-8]. In addition, some studies in view of mean 
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stress and strain effect on fatigue property under proportional loading have been 
reported [9,10], however extensive studies of mean stress and strain under 
non-proportional loading have not been reported. 

In this study, multiaxial LCF tests with mean strain under non-proportional loading 
using Ti-6Al-4V hollow cylinder specimen are performed to discuss the effect of mean 
strain on multiaxial LCF behavior. This study also shows parameter for life evaluation 
of Ti-6Al-4V under non-proportional loading with mean strain by applying a strain 
parameter and definition of stress and strain under non-proportional loading proposed 
by author into common criterion of Findley equation [11]. 
 
 
DEFINITIONS OF STRESSES, STRAINS AND NON-PROPORTIONAL 
FACTOR 
 
In non-proportional multiaxial fatigue, principal directions of stresses and strains 
change during a cycle. In such a case, strain and stress ranges, and mean strain and 
stress cannot be easily determined. An appropriate method of determining the ranges 
and mean values are needed in multiaxial fatigue under non-proportional loading. This 
section shows a method for calculating the stress and strain ranges and mean values in 
non-proportional multiaxial loading. 
 
Definition of Stress and Strain 
Figure 1 illustrates three principal values, Si(t), applied to a cube at time t together with 
xyz-coordinates (spatial coordinates), where “S” is the symbol denoting either stress (σ) 
or strain (ε). This study defines the maximum principal value, SI(t), as the maximum 
absolute value of the maximum or minimum principal value of Si(t) as, 
 

[ ])t(,)t(Max)t(SI 31 SS　　=     (1) 
 
In the equation, S1(t) and S3(t) are the maximum and minimum principal values at time t 
indicated in Fig.1, respectively. The “Max” denotes taking the maximum value from the 
two in the bracket. The maximum value of SI(t) during a cycle is taken as the maximum 
principal value (SImax) as follows, 
 

[ ])t(SIMax)t(SISI 0max ==      (2) 
 
Definition of Principal Stress and Strain Directions 
Figure 2 illustrates two rotation angles, ξ(t)/2 and ζ(t), to express the direction change 
of principal value in XYZ-coordinates, where XYZ-coordinates are the material 
coordinates taking X-axis in the direction of SImax and the other two axes in arbitrary 
directions. The rotation angle of ξ(t)/2 is the angle between the SImax and SI(t) directions 
and the rotation angle of ζ(t) is the angle of SI(t) from the Y-axis in X-plane. The two 
angles of ξ(t)/2 and ζ(t) are equated as, 
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where dot in Eqs 3 and 4 denotes the inner product, t0 is the time to take SImax and eY 
and eZ are the unit vectors in Y and Z directions, respectively. Sj(t) is a vector of 
principal value and the subscript j takes 1 or 3, e.g., j takes 3 when SImax = |S3(t0)|. 
 
Definitions of Stress and Strain in Polar Figure 
Figure 3 shows the trajectory of SI(t) in a 3D polar figure in a cycle where the radius is 
taken as the value of SI(t), and the angles of ξ(t) and ζ(t) are the angles shown in the 
figure. The rotation angle ξ(t) has double amplitude compared with that in the specimen 
shown in Fig. 2. The principal range, ∆SI, is determined as the maximum range of 
projection of SI(t) on the SI1-axis. The SI1-axis is the axis directing to the principal 
direction of SImax. The mean value of the principal value, SImean, is given as the middle 
value of the range. ∆SI and SImean are equated as, 

Figure 1. Principal stress and 
strain in xyz coordinates. 

Figure 2. Definition of principal stress and 
strain directions in XYZ coordinates. 

Figure 3. Definition of principal range and mean principal values. 
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where SImin is the SI(t) to maximize the value of the bracket in Eq. 5. The value of SI(t) 
in the polar figure have no negative value, so the sign of SImin in the figure is set as 
follows for calculation. The sign of SImin is set to be positive if it does not cross the SI2 
or SI3 axis and the sign should set minus if it crosses the axis. The physical meanings of 
the ∆SI and SImean given by Eqs 5 and 6 are the maximum range and the mean value of 
the principal value on the SImax-plane. 
 
Non-proportional Strain and Non-proportionality of Loading Path 
The authors proposed the following non-proportional strain range for correlating LCF 
lives under non-proportional loading [4,5,7,8]. 
 

( ) Iε1I NPNP ∆+=ε∆ fα      (9) 
 
In the equation, ∆εI is the principal strain range stated previously and α is a material 
parameter expressing the amount of additional hardening by non-proportional loading 
[4,5]. Another method for determining α is to take the same lives between in the 
push-pull and circular strainings at the same ∆εI [5]. 

fNP is the non-proportional factor that expresses the severity of non-proportional 
loading equated as using the vector product of unit vectors, 
 

∫ ×=
C R2

max
NP ds|SI(t)

)SI(4
1

1 ee|f    (10) 

 
 
EXPERIMENTAL PROCDURE 
 
Material tested was Ti-6Al-4V which received solution treatment at 960°C for 1 hour 
followed by water cooling and then annealing at 705°C for 2 hours followed by air 
cooling. Micro structure consists of alpha phase (Hexagonal close-packed crystal 
structure) and the two-phase mixture of alpha and beta phase (Body-centered cubic 
crystal structure). Shape and dimensions of specimen employed was a hollow cylinder 
specimen with 9 mm I.D., 11 mm O.D., and 6.8 mm gage length. 

Total strain controlled multiaxial LCF tests were conducted at room temperature 
under five types of strain path. The strain rates were 0.1 or 0.5%/s on Mises’ equivalent 
total strain base. Figure 4 shows the strain paths on ε−γ/√3 plot and strain waveforms 
employed in the test, where ε and γ are axial and shear strains. The strain paths 
employed are three types of proportional strainings and two types of non-proportional 
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strainings. The former are a push-pull straining (PP), a reversed torsion straining (RT) 
and a push-pull straining with constant mean axial strain (PPMA). The latter are a 
circular straining where axial and shear strains have 90 degree phase difference (CI) and 
a reversed torsion straining with constant tensile axial straining (RTCA). The number of 
cycles to failure (Nf) was defined as the cycle at which the axial or shear stress 
amplitude decreased to 3/4 from that in stable state. 
 
 
EXPERIMENTAL RESULTS AND DISCUSSION 

 
Figure 5 shows a cyclic stress and strain relationship obtained in step-up test (multiple 
step test) under PP and CI strainings where strain range based is increased by 0.2% at 

Figure 4. Strain paths and strain waveform employed. 
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Figure 5. Cyclic stress-strain relations in PP and CI strainings. 
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each 10 cycles from 1% to 3% on Mises’ base. These results show no additional 
hardening due to non -proportional straining. 

Table 1 summarizes test parameters in experiments. In the table, ∆εI, εmean, ∆εNP and 
fNP were equated by equations in the previous section. ∆ε*

NP will be defined later in this 
section. Figure 6 shows the relationship between Mises’ equivalent strain range (∆εeq) 
and failure life (Nf). In the figure, the thick solid line is drawn based on the data of PP 
test and the two thin lines show a factor of 2 bands. Nf in RT test are correlated within 
the band, but Nf in CI test decreased down to 1/10 comparing to that in PP test. Nf in 
PPMA and RTCA reduced by mean strains and constant strain and are correlated 
unconservatively out of the band. 

In order to evaluate the lives taking account of non-proportional loading, Nf are 
correlated by ∆εNP in Fig. 7, where α employed is α=0.45 determined by the degree of 
life reduction due to non-proportional straining because large reduction in life is shown 
with no additional hardening due to non-proportional straining. Nf in CI test are 

Table 1. Summary of test parameters. 
 

Mean or constant 
axial strain 

Non-proportional 
strain range Strain 

path 

Strain 
range 
∆ε or 
∆γ/√3, 

% 
εmean or 
εconst, 

% 

εImean, 
% 

Principal 
strain 
range 
∆εI, % ∆εNP, 

% 
∆εNP

*, 
% 

Non- 
prop. 
factor 

fNP 

1.00 0 0 1.00 1.00 1.00 0 
1.20 0 0 1.20 1.20 1.20 0 
1.37 0 0 1.37 1.37 1.37 0 PP 

1.70 0 0 1.70 1.70 1.70 0 
1.00 0 0 0.87 0.87 0.87 0 
1.20 0 0 1.04 1.04 1.04 0 
1.50 0 0 1.30 1.30 1.30 0 RT 

1.70 0 0 1.47 1.47 1.47 0 
1.00 0.20 0.20 1.00 1.00 1.10 0 
1.20 0.60 0.60 1.20 1.20 1.50 0 
1.20 -0.20 -0.20 1.20 1.20 1.10 0 PPMA 

1.20 -0.60 -0.60 1.20 1.20 0.90 0 
0.70 0 0 0.70 1.02 1.02 1.00 
1.00 0 0 1.00 1.45 1.45 1.00 
1.20 0 0 1.20 1.74 1.74 1.00 CI 

1.70 0 0 1.70 2.47 2.47 1.00 
0.8 0.2 0.07 0.72 0.84  0.88  0.38 
0.8 0.4 0.24 0.64 0.76  0.88  0.43 
0.9 0.4 0.22 0.74 0.89  1.00  0.44 
1 0.4 0.2 0.85 1.02  1.12  0.44 
1 0.8 0.62 0.64 0.73  1.04  0.32 

1.2 0.4 0.18 1.05 1.25  1.34  0.43 
1.2 -0.4 -0.18 1.05 1.25  1.16  0.43 
1.6 0.4 0.13 1.44 1.69  1.75  0.38 

RTCA 

1.6 0.8 0.48 1.28 1.53  1.77  0.43 
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evaluated within the band, but Nf in RTCA test are still correlated out of the band 
unconservatively, which suggests that life evaluation requires taking account of not only 
strain non-proportionality but also mean strain effect. 

Common used criterion for life evaluation under uniaxial loading condition with 
mean stress and strain is shown by Findley [11], which is equated by 
 

nk
2

F στ
+

∆
=       (11) 

 
where ∆τ is shear stress ranges. σn is normal stress on a plane. k is parameters which 
can be determined as lives in PPMA test takes equivalent to those in PP test. Eq. 11 is 
modified to strain parameter as it can be applicable to multiaxial fatigue under 
non-proportional loading, which is equated as 
 

meanNP
*
NP Ik2 ε+ε∆=ε∆      (12) 

 
where the value of k is put as k=0.22 based on the Nf in PP and PPMA tests. Although 
mean stress relaxation had occurred with increasing cycle in experiment, the mean 
stress remained until fatigue life. Thus, the mean strain could be introduced into Eq. 12 
instead of mean stress. 

Figures 8 shows correlations of Nf with ∆ε*
NP. It suggests that the parameter given by 

Eq. 12 becomes suitable parameter for life evaluation of Ti-6Al-4V under 
non-proportional straining with mean axial strain.  
 
 
CONCLUSION 
 
Strain controlled multiaxial low cycle fatigue test using Ti-6Al-4V hollow cylinder 
specimen under non-proportional straining with mean/constant tensile strain. Failure life 

Figure 6. Relationship between 
∆εeq and Nf. 

Figure 7. Relationship between 
∆εNP and Nf. 
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is affected by both non-proportional straining and mean/constant tensile strain. Degree 
of reduction in failure life depends on strain path. The proposed strain parameter 
equated with non-proportional strain range and mean strain based on the definition of 
strains proposed for multiaxial fatigue under non-proportional straining were applicable 
for the life evaluation of Ti-6Al-4V. 
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Figure 8. Relationship between ∆ε*
NP and Nf.
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