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ABSTRACT. This paper presents two improvements in the procedure for the evaluation
of the amplitude and mean values of the shear stress in critical plane class fatigue
criteria, when the method of the Minimum Circumscribed Circle (MCC) to the path of
the tip of the T vector is used. In particular, the paper shows how it is possible to reduce
the number of material planes passing through the point of interest in which the MCC
has to be determined and the number of points of each curve that has to be considered
for the determination of the MCC, noticeably reducing the computational time.

INTRODUCTION

In multiaxial high cycle fatigue criteria based d¢me critical plane approach, the
amplitude and mean values of the shear strgsan( 7,,) acting on the material planes
at a point have to be evaluated [1-4]. In fig.1 #hess vectop, acting on a generic
plane F centred at point O of the material is sholite component gb,, parallel to F,
i.e. Ty, can be identified by its components in a refeeesystem with orthogonal axis

v parallel to F, centred in O (fig.1b). In genethk length and the direction ©f change
with time (fig.1a) and the tip of the vector debes a path represented by a plane curve
T, like the example in fig.1c. Also in the case efipdic stress histories, for which the
T curve is closed, the determination gfand 7, is not straightforward and various
definitions exist [4,5]. In particular, the prefedr definition [4,5] is related to the
Minimum Circumscribed Circle(MCC) of T, in which, is assumed to be equal to the

Figure 1 — a) Stress vectoy acting at point O on plane F, b) components oforew,
c) example of T curve, d) minimum circumscribedlgrof T, 7, and 7., components.
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radius of the MCC and, to the modulus of the vector that points to thetieeof the
MCC, as shown in fig.1d.

Usually the path of the tip of the vectpacting on thg-th plane passing through the
material point (the T curve) is known in discreteni as a sequence Bf points 7 of
coordinatesy,, v,, with k=1,2.. N, so that the determination of the MCC requires the

application of proper algorithms. Furthermore, determination ofr, and 7, has to be
carried out in a discrete set of plangs#1,2.Nr, passing through the considered point.
In particular, for various method of multiaxial ifde analysis, the plane in which the
maximum value of &ertain function of 7, is reached has to be determined. In this case,
a great number of planes should be analyzed toroatgood estimation [6].

Various algorithms for the determination of the ®@ a curve known in discrete
form have been applied or especially developedhfercase of the path of the tip of the
vectort, in order to obtain the maximum speed of execuéind precision [5-10]. The
most important can be resumed in the following gaties [5]: points combination
algorithms [6,7], incremental algorithms [4], optaation algorithms [8,9], randomised
algorithms [10]. A comparison carried out in [5]shehown that when the number of
points is less than about 40, the methods propiosigd and [10] are the most effective,
otherwise the method proposed in [10] is preferalbigarticular, the method [10] has
different execution times depending on the sequehgmints to be analyzed, but the
average time on a number of cases is the lower.dEpendency of the execution time
by the number of points is approximately linear fioe method [10] and the quadratic
for method [6].

In this paper two improvements in the proceducedhe determination of the and
Im components acting at a point of the material aopgsed:

1. a reduction of the number of planes that have tfulhg analyzed, for the case

of the methods based on the critical plane approach

2. a reduction of the number of points that has tadesidered to determine the

MCC for each T curve analyzed.

THE DETERMINATION OF THE MCC

In theory, the centre of the MCC to a curve is puent of the plane for which the
maximum of the distances between the point itsel ¢he points of the curve is
minimum. In short, the problem can be summarizetthénfollowing expression:

) = ] a0 (v} @

whereU, V are the coordinates of the centre of the MOg;,V, are the coordinates of
the generic pointu, v are the coordinates of the curve. The distancéseea the
points of the curve and the centre are less orleéqube radiuR of the MCC:

D =4 ~U ) +(v, V)’ <R @)
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In the determination of the MCC is useful to reti@ithe pair of points of the curve
between which there is thmaximum relative distance. In particular, with reference to
fig.1d, we define:

* A,B points of the curve having the maximum relatiistance,

* dy the distance between points A, B,

« Cp the midpoint of segment AB joining the two points

* Ry the radius of the circle having as diameter tiggremt AB Ro=do/2).

The determination of these quantities can be exrout by properly using a
relationship like this:

d, = [Dl%{jr:qglx{\/(uk -u )2 + (vk -V, )2}} 3

In general, the MCC to a curve passes througbast two points of the curve. If it
passes only through two points (fig.1d), they adainly points A and B and the AB
segment coincides with one of the diameters ofcthde. In this case the centre of the
MCC coincides with point £and the length of the radius of the MCQRER,.

When there are points of the curve farther tRafrom G (fig.2a), the MCC can be
identified as the circle of minimum radius amongd passing througdt least 3 points
of the curve and verifying eq.(2). Obviously, iresle cases, the length of radius of the
circle isR>Ry and, in general, the three points do not necdgsaciude A and/or B.

Beingdp the maximum distance between 2 points of the ¢uang point of the curve
Is considered, the others must lie within an araaafiusdy centred in it. This fact
implies various limitations to the configuration thie curve with respect to its segment
AB. First, all points of the curve should lie betme2 arcs of radiudy centred in A and
B, nameda, andag, which intersect at points U and D (fig.2, dasHied). Further
limitations in the configuration of the curve caa dbserved if we identify the 2 most
distant points from the centre Gn opposite sides with respect to segment AB.

For example, with reference to Fig.2hk, iB the point of the curve farthest from the
centre @: in this case the points of the curve must aledriside a circle with radius
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Figure 2 — Geometrical limits of T curves accordiag\B segment and PPy points.
equal to the distancepl, centred in @, and within the arey, with radiusd,, centred in
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Pu. Point B that lies at the intersection between agsndag (fig.2c), coincides with
the most distant position fromyQon the opposite side of;Rvith respect to the segment
AB, where could lie a point of a curve that incladbe points A, B e R If this point
really belongs to the curve, the other points ntiestvithin the arcap;, with radiusdy
and centred in .

These arcs, here calledundary arcs, limit the field of existence of a curve T with
respect to some points belonging to it. It is im@ot to notice that the radius of the
MCC of T is greater if there are points of the euat elevated distances fromg, Gh
opposite position with respect to the segment ABopdrticular, for fixed value ay, the
radiusR is maximum if some points of T correspond to thens of intersection of the
boundary arches, such as poings 8d B, in Fig.2a.

REDUCTION OF THE NUMBER OF PLANES

The limitations on the geometry of the curve T widispect to segmetrk enable to
determine a limit to the length of the radius af MMCC in comparison to the length of
the segmendly itself. In particular, it is possible to affirmahthe radiu®R of the MCC
to a curve T whose length of the segment AB is ketud,=2 R, respects the following
relationship

R, < R<1.1547R, (4)

This feature has relevance in cases in which theimum alternate shear stress at a
point of the material has to be determined, athéndase of the critical plane approach
[1-4]. In this case, it is possible to reduce thenber of plane orientations where the
MCC to the T curve has to be determined. To this, & suffices to determing in all
the planes of interest(F=1,2.Ng), then to determine the greatest among tH&yRax

Ro.max = Max{ R, | (5)

finally it is possible to determine the MCGfly in planes where it is:
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Fig’ure 3 — MCC for various cases of positions efpbintga
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% max
> —= =
RO,I - 1'1547 0'866R0,max (6)
since, for the other planes, the largest circlelmsmaller or at most equalRe max

This feature can be verified by a simulation in efhionce the points A, B and,C
have been determined, different positions of thatpan the curve whose distance from
Co is the maximum are considered. Let us supposethiaturve T is represented by a
polygon with the following characteristics:

1. the vertex whose distané®>R, from G, is the maximum coincides with a point

belonging to one of tha, or ag arcs, for example? in Fig.3a

2. the other vertices of the polygon are located an dpposite side of (J? with

respect to segment AB, for example, poiptiPFig.3a.

In this case, as shown above, the curve T has tndheded between the areg, ag
anday (fig.3a) and must lie within a circle of radi&® centred in @ If a vertex of T
coincides with the intersection of the aegsanda, i.e. the point B (fig.3a), the MCC
passes through points Ayfand B and is the largest possible for a polygon with a
single upper vertex that coincides with the poipt. Pn particular, the radius of the
MCC isR=1.1547R,.

If the point R is at the same distance frong Gf the previous case, but is moved
angularly within the arcas andag, as shown in Fig.3b, the arag intersecta, andag
at points B; and R,. If two vertices of the polygon T coincide withofe points, as in
fig.3b, the MCC passes through the poings, P>; and B, and is the largest possible
for a polygon with a single upper vertex that cades with the point §. It is important
to note that the MCC of this case is smaller thengrevious one, beifg<1.154R,. In
general, the radius of the largest MCC decreases \wbint B, moves away from arcs
aa andag.

Although no example is reported in this papeis gossible to observe that, whatever
the position of B; along the ar@g, when a vertex of T coincides with the point of
intersection between the arag anda,, the MCC has the same length of the radius
R=1.1547R, or, in a case not described here, a lower value.
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Figure 4 — Example of T curve and correspondihgolygon.
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In a more general case, other points of the Teclievon the same side of the point
Pui, at distances from Ccomparable tdry, as the point & in fig.3c. It is therefore
possible that the MCC passes through more thanobrieose points. However, it is
clear that, in this case, the curve T is limitedsbyeral boundary arcay, each relative
to its point B, asay; anday; of fig.3c. In these cases, the points of inteieadbetween
the boundary arcs aatoser to the segment AB, so the maximum MCC is smahlant
that of the other analyzed cases and eq.(3) ifiecbri

Various simulations have shown that, by taking iatwount eq.6, the number of
material planes that need to be fully analyzed eterinine the MCC at a point is
reduced to abouine quarter.

REDUCTION OF THE NUMBER OF POINTSOF T CURVES

As mentioned, the number of calculations for theedsination of the MCC to a curve
is proportional to the number of poiftswhere the curve is known. In this section it is
shown how it is possible to reduce the number ahtpothat has to be elaborated,
keeping almost unchanged the values of the radidglae coordinates of the center of
the MCC. In particular, it is possible to determite polygon Tmade by points of
maximum relative distance from the centroid of theve T (fig.4, dotted line), then to
determine the MCC of T

The determination of the polygori i€ carried out by a simple procedure. Firstly the
coordinates of the centroid G of the curve T (sgd) are calculated. These coordinates
can be obtained according to two definitions. Tinst fone, that is the simplest and
fastest, considers the centroids of the pointdefT curve, whose coordinates can be
obtained as:

13 1
N; NZ:;' (8a,b)

The second definition considers the centroidshef $egments comprised between
couple of points of the curve. Defining:

e L the length of the curve T,
o Lg the lengths of theegments of curve T, each comprise between points
T and i1,

*  Ug, Vo the coordinates of thaentroids of such segments.
The coordinates of the centroid of T can be deteechby the following equations
13 13
Us==DUg L, Ve == Vo Ly (9a,b)
Lia Lia
beingLy, L edUg, e Vg, given by the following relationships

N
L =y (U U ) + (% ~Vien) L=>L, (10,11)

k=1
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=Y t U V, = Vi ¥ Vi
* 2 * 2
The relationships (9) and (10) lead to slightlifedent results in the determination of

the MCC as it will be described in the followingdussion.
Once the coodinates of the centroids are calajlabe distanceBg, between each

point 7, and the centroid are determined by the followiggagion:

Do, =(Ue U )" +(Vs -¥)

Finally, the relative maxima of the functi@s, definedr;, are determined. They are
the points for which the conditiddg, ,<Dg<Dg,.,, IS verified, i.e.

Ug (12,13)

2

(15)

D, <Dg <D, - rOT (16)

In generalN'<N maxima are obtained, each corresponding to a pRing of the
curve T (fig.4). The ensemble of these points éspgblygon T.

For comparison, the standard procedure proposég] was applied to 64 T curves
made of 7ZN<460 points and to the corresponding polygons obtained by the
proposed procedure. Some of the analyzed curvepawpgons are shown in fig.5.

The algorithms have been written in the MATLABrogramming language.

The differences between the radius of the MCCiobthby the standard procedure
and that obtained determining thé golygons proved to be negligible, as can be
observed in fig.5, where the original T curves, tloeresponding Tpolygons and the
MCC obtained by the polygons are shown. In pardicuhe average percentage errors
in the determination of the radius of the MCC usiegs.(9) and eqs.(10) were
En=—0.025% ande,~=—0.05% respectively, while the maximum percentagers were
En=—0.33% andEy=-0.41%.

Regarding the calculation time, 30 T curves madd=®56 points were considered.
The total time needed to evaluate 100 hundred tatidbe curves was recorded for the
standard procedurd{) and the proposed technique, considering boteaid (10)
(T4, T2). The calculations were repeated by reducing tireber of points of each curve
by proper factors in order to consider its effattthe calculation time. The results
reported in Table 1, that show that, ¥>128, the computational time in the
determination of the MCC can be noticeably redungedsing the proposed procedure.

Figure 5 — Various examples of T curves (black f®ircorresponding "polygons
(thick red line) and MCC obtained by thépblygons (blu line).
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The procedure based on egs.(10) proved to berads# precise, but slower. It can
be considered if the points of the curve are spateadvery irregular manner.

N To [sec] T]_ [sec] T2 [sec]
256 8.6 3.8 4.2
205 6.7 3.5 4.0
171 5.7 3.0 3.4
128] 4.1 2.9 3.4

Table 1 — Comparison of computational times in aheiieing 100 times the MCC of 30
curves.N number of pointsT; computational times.

CONCLUSIONS

In this paper two improvements in the proceduretlierdetermination of the amplitude
and mean values of the shear stress acting at erialgtoint in multiaxial high cycle
fatigue analysis have been proposed.

In particular, the proposed procedures enablebtain a reduction of the number of
planes that have to be fully analyzed, for the adsthe methods based on the critical
plane approach, and a reduction of the number oftpahat has to be considered to
determine the MCC for each T curve analyzed.

The reduction of calculation speed is noticeablyile the decrement of precision in
the determination of the MCC is negligible. Thegsed procedures are also easy to be
implemented.
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