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ABSTRACT. Plastic deformation introduces internal stresses in the crack tip region 
that modify crack growth (direction and kinetics). Therefore, fatigue crack propagation 
models for metallic materials have to care about history effects. A model was developed 
for mode I fatigue crack growth under variable amplitude loading conditions. The 
purpose of this work is to extend it for a 316L steel which contained both isotropic and 
kinematic non-linear hardening. To identify the parameters of the model, a multiscale 
approach is used to transpose local results obtained using FE simulations of crack tip 
cyclic plastic deformation at the global scale. Several experiments were made using 
potential drop as a measurement of crack tip propagation and also Digital Image 
Correlation (DIC) which allows us field measurement. SEM fractographies were also 
performed to determine the fatigue crack growth rate at a local scale. The 316L steel 
displays cyclic hardening, which is then also found at the global scale. A direct 
consequence of this is an increase of the overload retardation effect with the number of 
consecutive overloads. This effect is found both using FE simulations and in the 
experiments, under mode I conditions. 
 
 
INTRODUCTION   
 
Crack tip plasticity is known to be at the origin of spectacular memory effects in fatigue 
of metallic materials [1-8]. That makes difficult the modelling of fatigue crack growth 
under variable amplitude loads. These effects are related to the elastic-plastic behaviour 
of the material. The application of a mode I overload delays the fatigue crack growth. 
The overload yields the material ahead of the crack tip creating compressive residual 
stresses in the overload’s plastic zone. As a consequence, the efficiency of subsequent 
fatigue cycles is reduced and the rate of fatigue crack growth is decreased. This is 
commonly known as plasticity-induced crack closure [1] effect. In addition, if the 
overload’s ratio is large enough, the crack may grow under mixed-mode conditions until 
it has gone round the overload’s plastic zone [2]. Thus, crack tip plasticity can modify 
both the kinetics and the crack’s plane [2]. Therefore modelling the growth of a fatigue 
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crack under complex loading conditions requires a detailed analysis of the effects of 
crack tip plasticity. 

Finite element methods are useful for analyzing crack tip plasticity under various 
loading conditions [3]. In particular, FE analyses allow accounting for rather complex 
material constitutive behaviour. However, the simulation of mode I or mixed-mode 
fatigue crack growth by elastic-plastic finite element computations leads to huge 
computation cost. In order to model service conditions in engineering applications, the 
computations became even more expensive because real components typically have 
fatigue lives of a few millions cycles, and cracks do not generally remain planar. The 
objective of the proposed methodology is to combine the precision of local finite 
element computations with the rapidity of a global approach [9].  

For the sake of clarity, the principles of the technique will be briefly explained 
for elastic-plastic pure mode I cracks, then the developments that were added in order to 
take into account the effects of the 316L cyclic hardening law will be discussed. 
 
 
EXPERIMENTS 
 
For this experiment, we used CCT (Center Cracked tension) specimens, furnished by 
EDF. Their dimensions are 200*100*5mm. We performed two experiments: a constant 
amplitude fatigue crack growth test to get a reference fatigue crack growth law for the 
316L stainless steel and a variable amplitude fatigue crack growth experiment, to 
evaluate history effects. For this purpose, 10 overloads were applied every 9990 
constant amplitude fatigue cycles; the overload ratio was fixed at 1.34. 

It is observed that the application of periodic overloads increases very 
significantly the fatigue life. A retardation effect of about a factor 3 is found in this case.  

 
Figure 1. Evolution of the crack length measured with or without overloads in a 316L 

stainless steel. 
 The fracture surface was observed using a scanning electron microscope for a 
stress intensity factor around 20 MPa.m1/2 in both cases. When constant amplitude 
fatigue cycles are used, the crack growth is planar, and fatigue striations are clearly 
visible (Fig. 2a) [10]. The striations spacing is around 200nm. 
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(a) (b) 
Figure 2. SEM images taken for DK=20MPa.m1/2 (a) for a constant amplitude fatigue 

test (b) for a variable amplitude fatigue test. 
 

On the contrary, the fracture surface is rough when variable amplitude fatigue is 
used (Fig. 2b). Periodic markings can be seen on the fracture surface (Fig. 3a), which 
correspond to the traces of crack tip blunting during each block of 10 overloads cycles. 
As a consequence, the distance between 2 markings is equal to the crack propagation 
during 10 000 loading cycles, which allows evaluating the average crack growth rate 
directly from fractographic observations. It can be observed that this average crack 
growth rate is of 70 nm per cycle. The average crack growth rate determined from 
fractographies is therefore about three times smaller when overloads are applied 
compared with constant amplitude fatigue.  

 

 
Figure 3. SEM images taken for DK=20MPa.m1/2 for the variable amplitude fatigue 

test.(a) global view with markings when 10 overloads are applied every 10000 cycles. 
(b) striation spacing just after the application of the overloads.(d) secondary cracks 

observed at a distance of about 50 mm from the marking left by the overload. 
 

Using SEM images it was possible to observe also the local crack propagation 
rate. The 10 overloads leave large striations on the fracture surface (Fig. 3a) and the 
crack blunts significantly (by more than 5 micrometers). Just after the overloads block, 
very clear striations can be observed, with a striation spacing of about 400 nm (Fig. 3b) 
which indicates an increase of the crack growth rate just after the application of the 
overload, by about a factor two by comparison with that observed in constant amplitude 
fatigue. Then at about 50 micrometers from the last marking left by an overload block, 
the fracture surface becomes rough and secondary cracks can be observed (Fig. 3c) 
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which indicates a significant reduction of the local crack growth rate along the mode I 
crack growth plane. As a consequence, if less than a hundred of constant amplitude 
cycles are applied between each block of 10 overloads, a very significant increase of the 
average fatigue crack growth rate should be observed by comparison with a constant 
amplitude fatigue test. 

 
Figure 4. Evolution of the crack growth rate between 2 blocks of 10 overloads (1) 

Average value of the crack growth rate between 2 blocks of 10 overloads and 9990 
loads (2) local measurment on the crack surface with SEM, (3) observations of 

secondary cracks, meaning strong reductions of crack growth rate.  
 
It is therefore important to recognize that this problem cannot be modelled by a 

unique mechanism, such as the increase of the crack opening level when the crack tip 
propagates inside the overloads plastic zone. At least three phenomena are observed 
here, a large crack tip blunting during the application of the overloads, a transient but 
significant increase of the crack growth rate after the overloads, and finally a drop off of 
the crack growth rate. Therefore history effects in this material may introduce complex 
dependencies to the distribution of peaks in a load spectrum, which are aimed at being 
modelled in the future. 
 
 
MATERIAL CONSTITUTIVE MODEL 
 
The FE method is used to compute the details of the evolution of plastic deformation, 
residual stresses, stress range etc… within and around the crack tip region for a 
stationary of a moving crack tip. The main advantage of using the FE method is that it 
allows using complex material constitutive behaviours, which is usually needed for 
engineering alloys. For this purpose, we need first to identify a cyclic elastic-plastic 
constitutive law for the 316L stainless steel. 

The identification procedure of the parameters in the model f  requires the 
knowledge of the material cyclic elastic-plastic behaviour. It is performed using the FE 
method and is fully automatic and cheap in computation cost. In order to characterize 
the elastic-plastic constitutive behaviour of the 316L steel, we used a cylindrical 
specimen, with a diameter of 16mm thick. Strain controlled push-pull tests were 
performed with increasing strain amplitude (Fig. 5). The material displays both 
kinematic and isotropic hardening. Therefore, at each level, we performed 30 cycles so 
as to characterize the isotropic hardening of the material. The cyclic elastic-plastic 
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behaviour of this material was modelled using the Von Mises yield criterion and the 
coupled non-linear hardening law, standard in Abaqus 6.5 and detailed in Eq. 1 to 4. 

 
Figure 5. strain-controlled push pull test in the 316L stainless steel – Stress (MPa) 
versus plastic strain (%). 30 cycles are applied at each leval of the strain amplitude. 

 
The 7 material parameters used for the simulations are reported in Table 1. A 

reasonable agreement is found between experiments and simulations (Fig. 6). 

 σ = λTrε I + 2με       Isotropic Elasticity (1) 

 f =
3
2

σ ' − X( ): σ ' − X( )− R       Von Mises yield criterion (2) 

 σ ' = σ −
Trσ

3
I       Consistency Ý f = 0 (3) 

 Ý ε p = Ý λ ∂f
∂σ

      Normal flow law (4) 

 R = R0 +Q × 1− e−bp( ) Isotropic hardening law (5) 

 Ý p = 2
3

Ý ε p : Ý ε p       Comportement élastique (6) 

 X = CÝ ε p −γ X Ýp       Kinematic hardening law (7) 

 Parameters  λ,μ,R0,Q,b,C,γ{ } 
These parameters were used to simulate the push-pull test and to quantify the 

adjustment error. Then this constitutive behaviour is used for the finite element 
simulations of the cyclic behaviour of an elastic-plastic centre cracked FE model under 
variable amplitude mode I loading conditions. 
 
E (GPa) ν R0 (MPa) Q (MPa) γ C b 

187 0,3 110 90 580 112500 0,3 
Table 1 Parameters of the elastic-plastic constitutive law used in the model 
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MULTISCALE APPROACH 
 
A multiscale approach is used to transpose at the global scale the local results obtained 
using FE simulations of crack tip cyclic plastic deformation. Next, the set of curves 
generated by post-treating FE computations using that multiscale approach are used to 
identify an empirical global cyclic elastic-plastic constitutive law (denoted by f ) for 
the crack tip region with a global point of view. In this case, we used this method model 
in pure mode I conditions. A general elastic-plastic law is assumed for the material 
behaviour in the crack tip region. Thus, the displacement field in the crack tip region 
can be partitioned into as a sum of two components, an “elastic” and a “plastic” 
component. In addition, each of these components is defined as the product of an 
intensity factor and a reference field. The reference fields are determined first, using 
preliminary FE computations which the “elastic” reference field uI

e (x)  is the solution, 
using boundary conditions such as that KI=1 MPa.m1/2. Then a monotonic mode I 
loading ramp is simulated using this time the elastic-plastic behaviour of the material. 
At the end of the computation, the intensity ˜ K I (t) of the “elastic” part is determined as 
the projection of the computed displacement field u(x, t) onto uI

e (x) : 

 
˜ K I (t) =

u(x, t).uI
e (x)∫

uI
e (x).u

I

e (x)∫  (8) 

The rest of the displacement field is then calculated so as to define the “plastic” 
reference field, uI

c (x)  orthogonal by construction to uI
e (x) : uI

c (x).u
I

e (x)∫ = 0.  

 uI
c x( )= B u(x,t) − ˜ K I t( )uI

e x( )( ) (9) 
The coefficient B is adjusted so that the average value of the discontinuity of 

uI
c (x)  is equal to 1μm along the crack faces within a distance to the crack tip of one 

tenth of the crack length. The two orthogonal reference fields are used in the following 
as a basis to project (eq. 8, eq. 10) the displacement field within the crack tip region 
during each time increment of various variable amplitude loading schemes: 

 ρI (t) =
u(x, t).uI

c (x)∫
uI

c (x).u
I

c (x)∫  (10) 

Then, so as to identify the model, various elastic plastic FE computations are 
performed to generate evolutions of ρI (t) . So as to build a variational approach, only 
small time increments are considered. The displacement field du(x, t) during each time 
increment is approached according to Eq. 11 : du(x, t) ≈ d ˜ K I (t)uI

e (x) + dρI (t)uI
c (x)  (11) 

The error C(t) associated with this approximation (Eq. 12) is also calculated and 
remains usually well below 10%. 

 C(t) =
du(x, t) − d ˜ K I (t)uI

e (x) + dρI (t)uI
c (x)[ ][ ]∫

du(x, t)∫  (12) 
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This method enables to characterize the cyclic elastic-plastic displacement field 
in the crack tip region at the global scale, through two intensity factors only, ˜ K I (t), 
which is close to the nominal stress intensity factor KI

∞(t) , and ρI (t) , which measures 
crack tip plasticity at the global scale. The advantage of this methodology is that it can 
be applied to any material constitutive law. In practice, the approximation in Equation 8 
is performed at each step of a finite element computation using a post-treatment routine. 

This model can be all summed up into a set of about ten scalar partial differential 
equations. It provides the global plasticity rate dρI dt  within the crack tip region as a 
function of the nominal loading rate dKI

∞ dt  and of the current state of a set of internal 
variables φc, φXc, φm,, φXm( ). To finalize the model, a crack growth law is also 
introduced. It states that the rate of production of cracked area per unit of the crack front 
da dt  is proportional to the global plasticity rate dρI dt . This hypothesis derives 
merely from the well-known ΔCTOD equation. Then, once identified, the global model 
can be used to predict the fatigue crack growth rate for variable amplitude loadings 
schemes. It accounts for plasticity induced history effects and is cheap in computation 
cost. 

am bm acf bcf axm pa ka kb 
14,1 2,0 20,9 5,1 -1,4 -6,0*10-4 -6,1*10-2 -5,1*10-2 

Table 2 Parameters of the evolutions law of the model (See. [11]) 
 
 
RESULTS 
 
We performed 4 differents experiments and the simulations related to them. The goal is 
to compare the results obtained by the analytic solution furnished by our model 
(represented by continous lines) and the crack growth rates measured experimentally 
(represented by discrete points).  

 
Figure 6. Experiments and simulations performed for 4 types of loadings (ModeI). REF 
- without overload and R-ratio = 0,1 / JCLR - without overload and R-ratio = 0,5 / 10OL 

- 10 overloads every 9990 loads / 1OL200 - one overload every 200 loads. 
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We performed an experiment without any overload and a R-ratio of 0.1 (REF), then 
another experiment by EDF without any overload but with a R-ratio of 0.5 (JCLR). Two 
experiments with overloads were accomplished: one with an overload every 200 loads 
(1OL200) and another one with a block of 10 overloads every 9990 loads (10OL). The 
level of the overload ratio is 1.34 for both experiments. The agreement between the 
model and the experimental results is very good for the 3 first experiments. The strong 
non-linearity that we observed for the last experiment highlights the difficulty to 
modelise those phenomena. The calculation of the propagation of the crack takes about 
2 minutes, this is an advantage of this modelisation and an objective for an engineering 
utilisation. For more details about the methodology to identify the model, see [11]. 
 
CONCLUSION 
 
The 316L steel displays non-linear cyclic hardening, which is also found at the global 
scale. A direct consequence of this is an increase of the overload retardation effect with 
the number of consecutive overloads. This effect is found both using FE simulations 
and in the experiments, under mode I variable loading amplitude conditions. The goal of 
this work is to understand and to model the complex hardening of this material and 
introduce it in our approach. The multiscale approach used save time and expensive FE 
simulations since the simulations of the propagation of a crack are very fast. 
 The results that we obtained showed good consistency with the experiments that 
we performed although we still need to work to understand better the block effect of 
overloads. Our approach developed for mode I conditions will be extended for mixed 
mode conditions under mode I+II+III with overloads. 
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