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ABSTRACT. Torsion tests are widely used to investigate thsteplastic behaviour of
metallic materials, particularly when large straimse involved, up to the specimen’s
fracture. Such tests induce multiaxial inhomogesesimess/strain and damage fields
into the specimen. In this paper, elastoplasticsitmm at room temperature of uniform
isotropic circular solid and tubular metallic sp@egens is investigated in the finite strain
range, both in analytical and numerical forms. Taper reports preliminary results of
an on-going research project at the University erdgamo [1]. Particular emphasis is
given to the evaluation of the so-called Poyntimgthe elastic domain) and Swift (in
the plastic range) effects [2,3], i.e. the recordedal length variation of the specimen
that may appear under free-end torsion.

INTRODUCTION

The analytical investigation has been carried-athiwthe elastic range and just for the
case of fixed-end torsion, both for tubular anddsepecimens, by assuming a priori a
kinematic field for the response of the torsioncepen. Special attention is given to the
outcomes that arise from the adoption of threeetkfiit objective stress rates, namely
Cotter-Rivlin, Truesdell and Jaumann-Zaremba strasss, particularly when large
strains are involved. The numerical investigatiencarried-out for the whole torsion
test, up to fracture separation, for both tubutadt aolid specimens and for both fixed-
and free-end conditions, taking into consideratsmveral hardening models and a
damage model. Numerical results are based and cethpath data available in [4].

ANALYTICAL RESULTS
A kinematic field for the specimens under fixed-dgacsion is assumed, which applies
to both solid and tubular specimens. Because ofaktiggymmetry of the specimen, a

cylindrical coordinate system is adopted. Uppeedatiers (RO, Z) denote the initial
radial, angular and longitudinal coordinates at point of the specimen, gathered in
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vector YT = {R,0,Z}. Conversely, lower case lettersB(z) and vectoly™ = {r, 0, z}
denote the corresponding current coordinates.

The twist angle at the generic cross-section itihbya and is assumed to be a
linear function of time t and longitudinal coordia&:

a(Z,t) = B(Z = Ptz , (1)

where B(t) is the twist angle per unit initial length, witrssumed constant time
derivativep. The longitudinal coordinate ¥(t) is assumed to remain always equal to its
initial value Z; this hypothesis is inspired by thendition of fixed-end torsion and
automatically copes with it. For the sake of simipyi it is also assumed that the
specimen deforms (elastically) at constant voluiteus, the radial coordinateYrf)
also keeps equal to its initial value R. The currangular coordinat®(Y,t) can be
expressed in the for®(Y,t) = ©® + a = ® + ptZ. According to all made assumptions,
the kinematic field can be resumed as follows:

r(Y)=R
0(Y,t) =0+ptZ . (2)
z(Y)=1Z

By denoting withy = BR the shear strain field (axisymmetric and lineaRihand
with y its time derivative, it is possible to derive, ficthe kinematic field (2), the
expressions of deformation gradigntvelocity deformation gradierdt = D + W, rate
of deformatiorD and spin tenson:

0 0 O 0 0 O
1 00 0 0 O 0 o ¥ 0o o Y
[F]=(0 1 y|, [L]=]0 0 vy|, [D]= 2|, [W]= I )
0 0 1 0 0 O 0o Y o o =Y o
2 2

The stress response, in rate form, at any poitit@tpecimen can be obtained by the
following assumed elastic isotropic constitutiverla

6°" = Atr(D)& + 2GD = 2GD, 4)

whereA and G are the first and second Lamé constahis, the 2nd-order identity
tensor ands®® denotes any appropriate objective stress rateeofauchy stress. In
the present paper the following Cotter-RiwiifR®, Truesdelle™ and Jaumann-Zaremba
6’2 objective stress rates are employed and theioouts confronted:
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6‘R=6+LT-0+0-L, (5)
6"'=6—-L-c—o-LT+tr(L)o, (6)

62=6-W-0+0-W. (7)

An ODE (Ordinary Differential Equation) system witolution for the Cauchy
stressos is obtained by putting objective stress rateq{%)nto the constitutive law (4),

as showed in details in [1]. The corresponding wiwal integration leads to the

following expressions of the Cauchy stressaccording to the three assumed objective
stress rates.

0 O 0
[6]CR = [0 0 Gt ] 8)
0 VGt —V2Gt?
0 0 0
[6]™ = [0 Y2Gt? YGt] , (9)
0 yGt 0
0 0 0
[6]%2 = |0 V*G[cos(yt) — 1] Gsin(yt) : (10)
0 G sin(yt) Y2G(1 — cos(yt))

The following graphs, reported in Fig. 1, presém &nalytical results in the form of
three plots, namely the evaluated torque, outearssteess and outer longitudinal stress
vs. twist angle, by taking into consideration tlaeng tubular specimen characteristics
and the same torsion velocity as reported in [ @nalysis is run up to 10 revolutions,
l.e. 62.83 radiants, to evaluate the elastic respaat large strains, for hypothetical
illimited elastic behaviour (no material yieldingjimilar trends stand as well for solid
specimens, with results that differ only for thesimilar internal radius. The results will
be further commented in the Conclusions.
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Figure 1. Analytical results for tubular specimemsler fixed-end torsion: red curve for
Cotter-Rivlin, black for Truesdell and blue for d@ann-Zaremba stress rates.
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NUMERICAL RESULTS

The numerical simulations are carried-out with 3&rghedral elements, using the
Jaumann-Zaremba stress rate, according to an inepkation that is available within
the adopted FEM code (ABAQUS). Torsion is imposethe FE specimen by means of
two rigid studs, one fixed at one end and the otb&ting at the other end with respect
to the longitudinal axis of the specimen. The d&bn of a reference point for both
studs makes easier the imposition of their motwinether constraint or rotation must
be imposed. Experimental observations in [4] deteemthat failure for tubular
specimens manifests itself roughly at around 3a84(220°) and for solid specimens at
about 5 rad (287°). Thus, twist angles of 4.71(@&«&D°) and 6.28 rad (360°) have been
recognized as reasonable terms for the simulationthe two cases. The material
properties adopted in the FEM models are derivethbéyensile tests exposed in [4], for
the AISI 1020 steel used therein. Same, all otharacteristic parameters, such as
specimen’s geometrical properties and applied darsielocity are taken from [4].
Worth-noting geometrical properties are the gaeggth of 16 mm, for both specimens
and the external radius of the gauge section, @h® 5 mm for tubular and solid
specimens, respectively.

First, preliminary simulations have been carried-tmuoutline a coherent meshing
procedure, with the goal of obtaining accurate-ghoresults at reasonable CPU time.
The tubular specimen is discretised with 55643 eleisiand 12191 nodes, while the
solid specimen, of smaller dimensions, is assembigdd 33551 elements and 6601
nodes. Second, several hardening models have beestigated: 1) perfectly-plastic; 2)
isotropic hardening; 3) linear kinematic hardenidgrombined hardening (considering
both isotropic and non-linear kinematic hardening); combined hardening with
damage and FE removal, to account for specimenigréaand consequent sudden
torque drop. Thus, five different cases are exadhioe each condition, i.e. tubular vs.
solid and free- vs. fixed-end. The implicit solveas been used for the first four
hardening cases, whereas for the last case, whathdies damage failure, the explicit
solver has been employed. Carried-out preliminanuktions ensured that the implicit
and explicit solvers were giving tight results, eptfor second-order oscillatory trends
due to spurious dynamic effects that arise withekglicit solver. Following Figure 2
reports sample outcomes of the FE simulationsuioular specimens.

Figure 2. FE simulation of tubular specimens urice-end conditions: (a) Assembled
model under torsion; (b) Swift effect; (c) Sepavatiracture.
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Results for tubular specimens are presented inFigy means of six graphs, taking
into consideration both fixed- and free-end te3tse torque, axial force and axial
elongation are evaluated at the reference poititefotating stud, while the outer shear
stress is evaluated as an average within two @léenents located in the center of the
specimen. Different colours represent the five ttrisre models taken into
consideration: 1) red for perfectly-plastic; 2) élior isotropic hardening; 3) orange for
linear kinematic hardening; 4) green for combineddening; 5) purple for combined
hardening with damage. When experimental data fdjrare available, they are scored
by a dotted black line; it must be remarked thaséhdata always refer to fixed-end tests

only.
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Figure 3. Numerical results for tubular specimédixed-end results in the left column;
free-end results in the right column.
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The same six graphs, in the same order but fod sgecimens, are then presented in
following Fig. 4.
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Figure 4. Numerical results for solid specimensedi-end results in the left column;
free-end results in the right column.

Figure 5 presents a direct comparison between figed free-end tests for tubular
specimens, in terms of torque and outer shearsstt®stwist angle. It shows the small
difference that appears between the two caseshwdiifer only for a little surplus of
torque and shear stress for fixed-end results. [&intiends hold as well for solid
specimens.
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Figure 5. Direct comparison between fixed- (dotieds) and free-end (solid lines) tests
for tubular specimens.

Figure 6 presents a direct comparison between teedor tubular and solid
specimens in terms of axial force (for fixed-ensks¢ and axial elongation (for free-end
tests) vs. twist angle, for the case of linear kiagc hardening, i.e. the one for which
the Swift effect turns-out more susceptible. Itwhalearly a strong difference between
the two cases, with the tubular specimens thanhdely display a higher Swift effect.
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Figure 6. Swift effect outcomes for tubular (dotteds) and solid (solid lines)
specimens (linear kinematic hardening case).

CONCLUSIONS
From the analytical results it is possible to adeafirst important considerations on the

validity of the three considered objective streates. The Cotter-Rivlin stress rate
induces the presence of a shear stress compomedr with time and of a negative

849



(compression) longitudinal stress component, quedvath time. The Truesdell stress
rate implies the presence of the same previous steess component, but does not set
a longitudinal stress component, while it determiimestead a hoop stress component,
positive and quadratic with time. The Jaumann-Zé&estress rate outcomes in shear,
longitudinal and hoop stress components but wittillagory trends in time. This fact
does not appear coherent with reality and seeniiat-out the unsuitability of the
Jaumann-Zaremba stress rate, at least in the egdnd@lastic range. This confirms
results obtained by different researchers undetielaimple shear, as cited in [1]. It can
be concluded that the Cotter-Rivlin objective streste sets the best results, considering
both shear and longitudinal stress componentsewhé Truesdell rate fails in setting a
longitudinal stress component. Further, preliminamestigations under way show that
the three objective stress rates behave differemtlye elastoplastic range. In particular,
the Jaumann-Zaremba objective stress rate doesehatscillatory trends in this case,
for none of the three non-zero stress components.

Numerical results show a quite good correspondenterms of the torque vs. twist
angle response of the specimen, with case-to-casations due to the different
hardening model considered. In particular, the Itesfor tubular specimens with
combined hardening and damage reproduce almoseqgigrfthe experimental data
in [4]. It has to be emphasized that no explidtirfg attempts have been made here. The
results are obtained merely by using the tensita daposed in [4]. The only exception
is for the damage model parameters, which have baged to capture the breaking
point of the experimental data for the tubular speas. For what it concerns the Swift
effect, it is interesting to note that it arisesaih five examined cases, although with
different magnitudes, which clearly state a sewigytiof the Swift effect on the assumed
elastoplastic constitutive model.

On the base of the obtained analytical and numemrsallts, it seems reasonable to
conclude that the Poynting/Swift effect manifestself due to the finite strain
kinematics of the torsion test, which determines tinset of a longitudinal stress
component in the fixed-end test and of an axiahgddion in the free-end test. This
consideration confirms what is suggested by Bitlimgin [3]. Moreover, the fact that
the Swift effect arises for all five examined harig cases could lead to think that
further potential causes of its manifestation, likey. material anisotropy of the
specimen, stress-induced anisotropy or hardeniray, play a secondary role in this
sense, acting more as magnitude parameters ratrecauses.
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