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ABSTRACT. This paper presents the extension to biaxial proportional loads of a short 

crack growth model based on the blocking of dislocations at grain boundaries. The 

model considers a small inclined crack and its associated plastic zones blocked in a 

grain boundary and within a plane biaxial stress field. Two distributions of dislocations 

are employed to account for the climb and glide components of displacements. The 

conditions for activation of dislocations sources in the neighbour grain are established 

and this leads to a biaxial limit criterion which reproduces the well-know Gough and 

Pollard ellipse. 

 

 

INTRODUCTION 

 

Virtually all machine components are under cyclic multiaxial stresses and strains during 

normal operation. These conditions can arise from the intrinsic geometry of the 

component (viz. the presence of stress raisers or notches) or its being under multiaxial 

loads. The fact that most components can eventually undergo fatigue failure has 

stimulated much interest in understanding their response under such demanding 

conditions. 

Gough et al. [1, 2] were among the pioneers in studying the phenomenon of multiaxial 

fatigue in a careful, extensive manner. Their research was prompted by the need to 

develop effective methods for designing power transmission shafts to be simultaneously 

subjected to rotational bending loads and torsional loads. In fact, the shaft calculation 

method in widest use today─and endorsed, for example, in the American shafting 

standard ANSI/ASME B106.1M-1985[3]─is clearly based on their experimental results.  

    Gough's group used a specially designed resonating machine capable of applying 

alternate  bending and torsional loads, and allowing the mean stress for both types of 

loads to be controlled. They used ductile steels and cast iron typically employed by the 

aeronautical and automobile industries at the time (the 1950s), which they subjected to 

various thermal treatments in order to obtain a wide variety of microstructures including 

ferrite-pearlite, pearlite and spheroidal cementite. In this way, they prepared 14 different 

materials for testing. Also, they studied solid and hollow cylindrical specimens with and 

without stress raisers. As can be inferred from the more than 200 S-N experimental 

curves reported in a paper by these authors [2], they conducted quite comprehensive 
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tests. Thus, each material and specimen type were analysed for the stress range to be 

applied in order to obtain a given life value at seven different values of the bending-to-

torsional stress ratio (§f=§q). Fatigue limits were determined by endurance testing on 

a minimum basis of 107cycles. Their results were reported in the form of curves in the 

f ¡ q plane. Figure 1 shows a typical curve. The experimental data points fitted two 

different equations defining an elliptical quadrant (solid line in the figure): 
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where §b is the bending fatigue limit and §t the torsional fatigue limit. 

 
Figure 1.Typical experimental results of Gough et at. [2]. 

 

It should be noted that these equations are purely empirical in nature. In fact, they were 

based on static failure and yielding criteria, but modified in order to account for the fact 

that the experimentally determined tensile-to-torsional fatigue limit ratios for the 

studied materials consistently failed to comply with the predictions based on these static 

criteria; this led Gough's group to use such a ratio as an independent variable to be 

experimentally determined in each case (see [2, pp 35-40]). As noted by these authors, 

their aim was not to obtain the curve best fitting the seven experimental points available 

in each case; rather, they used the two extreme values of the experimental fatigue limits 

under pure bending and pure torsional loads in each case. The sole exception to this 

procedure was Cr-Ni steel, the curve for which is at the top of Figure 1. 

    The difference between the ellipse quadrant and ellipse arc depends on the b=t ratio. 

The two types of curve are very similar for materials with b=t ratios close to 2. The 

ratios for the materials studied by Gough et al.  ranged from 1.1 for one cast iron to 1.93 

for one of the most ductile steels used in specimens with no stress concentration. The 
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range spanned by notched specimens was 1.02-1.65. From their results, Gough et al. 

inferred that the behaviour of ductile materials was better fitted by an ellipse quadrant, 

and that of the most fragile materials and the notched specimens by an ellipse arc. 

    This paper describes the extension of a microcrack propagation model based on the 

theory of distribution of dislocations to the fatigue limit under biaxial loads. The 

following section provides an overview of this type of model. 

 

MICROCRACK  PROPAGATION MODEL. UNIAXIAL LOADING 

 

Navarro and de los Ríos [4, 5] used the BCS concept to develop a model for fatigue 

propagation of microcracks in unnotched solids. It was assumed that plastic slip under 

fatigue conditions occurs in rectilinear slip bands across grains in the solid, and that 

cracks appear in those grains most readily forming persistent slip bands by effect of 

their size and crystallographic orientation. Also, they assumed that each crack and its 

associated plastic zone would expand just up to a microstructural barrier (usually a grain 

boundary), where it would be stopped until conditions for triggering plastic slip in the 

next grain were met. Crack propagation and blocking at a barrier would occur in each 

successive grain, and this introduces a certain discrete character into the theory, for the 

plastic zone does not advance in a continuous way; rather than that, it progresses by 

means of discrete jumps, engulfing a new grain each time it advances from barrier to 

barrier. This results in oscillating pattern of growth rate, with increasingly smaller 

amplitudes.  

    The crack, its plastic zones and barriers are represented by a continuous distribution 

of dislocations. Figure 2 shows a schematic depiction of the model, which assumes an 

infinite solid of a metal of average grain size D under a uniform stress ¿  and containing 

a crack of length 2a inside. The crack is assumed to have nucleated within a grain and 

its plastic zone to have grown over i grains (with i = 1; 3; 5; : : :). In front of the crack 

tips are its associated plastic zones, which are blocked by the barriers at the end of a 

grain. The position of the grain boundary will be given by iD=2, which represents the 

number of half-grains crossed by the plastic zone on each side. The stresses ¾1;¾2;¾3 

represent the resistance to dislocation movements in the crack, plastic zone and barrier, 

respectively. The microstructural barrier is modelled by a small zone of length 

r0 (r0¿D), which represents the typical size of the interface between grains or the 

typical distance to dislocation sources that can be activated in the next grain. 

 
Figure 2. Crack, Plastic zone and barrier. 
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The relation describing the equilibrium of dislocations is an integral equation of the 

Cauchy type. On the constraint that the stress solution of the equation should be 

bounded throughout the field, one can obtain a relation to calculate the stress  ¾3  at the 

barrier at any time. As the crack propagates, the stress ¾3 needed to maintain 

equilibrium increases and eventually peaks when the crack reaches the barrier. In the 

absence of interferences between the crack sides (¾1 = 0) and for the crack tip exactly 

at the barrier edge  (n1 =n2 =(iD=2)=(iD=2+r0)'1), 

 ¾3 =
1

cos¡1 n2

h¼

2
¿
i
 (3) 

The crack will continue to propagate over another grain if the stress ¾3 reaches a critical 

value allowing the dislocation source to be activated. The critical activation condition 

can thus be expressed as follows: 

 
¾3

m¤
i

= ¿c (4) 

where m¤
i is a crystallographic orientation factor to project the stress ¾3 onto the plane 

and slip direction of a dislocation source in the adjacent grain, and ¿c is the critical 

stress needed to activate the source. The previous two equations allow one to calculate 

the minimum applied stress ¿Li required to activate plastic slip in the next grain. Using 

the approximation cos¡1 n2 = (2(1¡ n2))
1
2 ¼ 2(r0=iD)

1
2 one can obtain 

 ¿Li =
4

¼
m¤

i ¿c

³ r0

iD

´ 1
2

 (5) 

The fatigue limit, which following the nomenclature of Gough et al. used in the 

Introduction, is denoted by t, can be obtained by making  i = 1  in the previous 

equation: 

 t = ¿L1 =
4

¼
m¤

1¿c

³r0

D

´ 1
2

 (6) 

Obviously, ¿c and ro are not measured in order to calculate t in practice; rather, the 

opposite procedure is used. Although this observation is seemingly trivial, it is the key 

to applying the model to more complex real-life problems such as those of notched 

elements. If one can relate the stress at the barrier with that applied upon the body, i.e., 

if one can establish for the problem at hand the relation equivalent to Eq. (3) above, then 

the activation condition (Eq. (4)) can be modified by substituting the microscopic terms 

with the expressions relating them to the fatigue limit for the material (Eq. (6)) in order 

to derive an expression affording the calculation of the fatigue limit for a notched 

element as a function of the fatigue limit for the material [6-9].  

 

 

EXTENSION TO PROPORTIONAL BIAXIAL LOADS  

 

In the presence of proportional biaxial loads, one must consider two types of dislocation 

distributions, namely: one with Burgers vectors normal to the crack (climb) and the 

other with such vectors parallel to the crack (glide). Also, the crack propagation 

direction is unknown beforehand (see Figure 3). The tangential stress on the dislocation 
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sources now includes components from both dislocation sets. The activation condition 

allowing one to predict whether a crack will overcome its first barrier, which is the 

condition for the fatigue limit, is, thus, written: 

 
¾3

m¤
¾1

+
¿3

m¤
¿1

= ¿c (7) 

where m¤
¾1 and m¤

¿1
 are the orientation factors allowing one to calculate the shear stress 

in the slip plane and the slip direction of the dislocation source from the stresses 

induced at the barrier by the two distributions of dislocations. We just assume that they 

add up to the total value. 

 
Figure 3. Model for Biaxial loading. 

 

As with monoaxial loads, solving the equilibrium conditions for the two dislocation sets 

and using the existence condition for a bounded solution allows one to relate ¾1
3 and ¿ 1

3  

at the barrier on the one hand, and ¾ and ¿  ─which act in the crack plane─ on the other. 

The ensuing relations are identical with Eq. (3), so the activation condition can be 

expressed as 

 
1
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¼

2

·
¿

m¤
¿1

+
¾

m¤
¾1

¸

= ¿c (8) 

which can be rewritten in a much more revealing form by using the approximation 

cos¡1 n2 = (2(1¡ n2))
1
2 ¼ 2(r0=iD)

1
2 and rearranging:  

 
¿

¿U
+

¾

¾U

= 1 (9) 

where  ¿U = 4
¼

m¤
¿1¿c

¡
r0
D

¢1
2 and ¾U = 4

¼
m¤

¾1¿c
¡

r0
D

¢1
2. 

The previous relation is the equation of a straight line splitting the ¾¡¿ plane in two 

regions (see Figure 4). Stress combinations above the line cause the activation of 

dislocation sources and hence cracks to propagate beyond their barriers and eventually 

result in failure. On the other hand, stress combinations below the line allow cracks to 

reach their barriers; however, because no plastic slip occurs beyond the barriers, cracks 

stop at them unless additional stress is applied. 
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Figure 4. Biaxial Microscopic Activation Criterion (Eq. (9)). 

 

 Let us see how we can relate the microscopic properties of the material with the tensile 

and torsional fatigue limits via ¾U and ¿U. This can be easily achieved by examining the 

corresponding tests using Mohr's circle. 

 

 
Figure 5. Morh Circle and Microscopic Activation Criterion for torsion. 

 

Pure torsion test  

Figure 5 shows Mohr's cycle for a pure torsion test. The material is subjected to fatigue 

in torsion. The maximum cyclic stress applied without fatigue failure (or, in other 

words, the minimum stress to be applied in order to cause failure) is obviously the 

torsional fatigue limit  t. When the torsion stress applied in the test coincides with t, the 

Mohr cycle will be tangential to the line for the microscopic activation criterion. 

 

 
Figure 6. Morh Circle and Microscopic Activation Criterion for bending. 
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Pure bending test 

Figure 6 shows the Mohr circle for a pure tensile test. The applied normal stress causing 

the Mohr circle to be tangential to the line for the microscopic criterion must be the 

bending fatigue limit, which is denoted by b. 

    Based on the previous two figures, one can readily obtain the following relations to 

calculate ¾U and ¿U from the tensile and torsional fatigue limits (b and t, respectively, 

with ®= b=t): 

 ¾U =
b

2¡ ®
¿U =

b

2
p
®¡ 1

 (10) 

 

 
Figure 7. Morh Circle and Activation Criterion for combined bending and torsion. 

 

Combined Bending and Torsion Test  

This is a test combining bending and torsional fatigue. The normal applied stress is

f · b and the aim is to determine the minimum shear stress q required to cause fatigue 

failure. Figure 7 shows the Mohr circle obtained under these conditions. The point with 

abscissa f=2 in the horizontal axis is used to draw a line normal to that for the 

microscopic activation criterion. The intersection with such a line defines the radius of 

the Mohr circle. In turn, the intersection of the circle with the vertical axis determines 

the sought value of the shear stress, q. Accordingly, the radius of the circle defining the 

biaxial fatigue limit obeys the following equation: 

 

 sin' =

q
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4
+ q2
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f
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 (11) 

 

As can be seen, substituting the previous expressions for ¿U and ¾U as a function of b 

and t (Eq. (10)) into Eq. (11) yields  
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which is exactly Eq. (2).  
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DISCUSSION AND CONCLUSION 

 

It can be concluded that the proposed micromechanical model provides an accurate 

theoretical prediction of the ellipse arc established from the experimental data of Gough 

et al. This testifies to the usefulness of the micromechanical models for small crack 

propagation. However, we should note that the same equation can also be obtained by 

using alternative theories. In fact, Gough himself [2, p. 40] not only insisted that he 

adopted both the ellipse arc and ellipse quadrant based  purely on the empirical 

evidence, but also noted that the ellipse arc had by then been predicted via three 

different routes. Discussing such theories is beyond the scope of this paper, however. 

    It must be carefully noted that the equations presented here do not apply to non-

proportional loading. It is well known that non-proportional loads induce dislocation 

substructures far more complex than proportional loads. This is due to the production of 

cyclic plastic strains along multiple slip systems associated with the rotation of the 

principal strain axes during non-proportional cycling. Thus the simple model of a slip 

band of fixed orientation can hardly be expected to apply in that case. 
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