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ABSTRACT. The fatigue assessment of structural components under a complex 
multiaxial stress history is one of the most difficult engineering challenge.  As is well-
known, several materials present a conventional fatigue strength at a given number of 
cycles under constant amplitude fatigue loading, while a conventional fatigue strength at 
a given number of cycles cannot be defined in the case of arbitrary varying and/or 
multiaxial stress histories.  Several approaches have been developed to study this 
problem: empirical models, critical plane approaches, average stress criterion and 
stress invariant approaches.  The damage phenomena can also be assessed by using an 
endurance function.  In the present paper, a model for fatigue damage evaluation in the 
case of an arbitrary multiaxial loading history is proposed by using a damage function 
which allows us to evaluate the final failure of the material.  By introducing an evolution 
equation for the material damage D , the final collapse of the material is assumed to 
occur when the damage is complete, that is to say, when D  reaches the unity.  The 
parameters of the model are determined through a Genetic Algorithm (GA) once a 
complex stress history and its effects on the material fatigue life are known.  The 
proposed model presents the advantage to avoid any evaluation of a critical plane and 
any cycle counting algorithm to quantify the fatigue life, because it simply considers the 
loading process step by step and its effect in terms of damage. 
 
 
INTRODUCTION 
 
Fatigue failure is one of the most analysed collapse mechanism in modern engineering 
applications since variable load histories are often involved in practical problems.  From 
the pioneering researches conducted by Wöhler in the XIX century, enormous advances 
have been made in fatigue assessment of solids and structures [1, 2].  Nevertheless, the 
problem of fatigue is not completely solved because of the complex mechanical 
phenomena which are involved (fatigue damage is influenced by the environmental 
conditions, size of structural components, stress values, stress gradient, etc.), and 
remains still open, especially when the case of arbitrary loading history is considered. 
Even in high-cycle fatigue regime, where the material behaviour is macroscopically 
elastic, fatigue failure occurs after a certain  number of loading cycles due to the 
nucleation and growth of micro-cracks, voids or micro-plasticized zones up to the 
formation of a dominant crack, subsequent stable fracture propagation, and complete 
failure when the macro-crack reaches a critical size. 

The problem of fatigue assessment in the case of a complex multiaxial stress history 
is one of the most difficult since damage accumulation depends on all the components of 
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the stress tensor and on their variation during the whole fatigue phenomenon.  Several 
approaches have been proposed to examine such a problem: empirical models, critical 
plane criterion [3-6], average stress criterion [7], energy approach [8], and stress 
invariant approach [9]. 

In the present paper, an attempt to model fatigue damage for an arbitrary multiaxial 
loading history is presented based on a damage function the parameters of which are 
determined through a genetic algorithm procedure. 
 
 

THE PROPOSED FORMULATION 
 

Endurance function 
As is well-known, several materials present a conventional fatigue strength at a given 
number of cycles under constant amplitude fatigue loading, i.e. a level of stress below 
which the expected life is practically unlimited and no damage accumulation occurs.  
When a cyclic loading is characterised by a maximum stress higher than such a 
conventional fatigue strength at a given number of cycles, failure occurs after a certain 
number of cycles due to the progressive development of damage inside the material up 
to the final collapse.  On the other hand, a conventional fatigue strength cannot be 
defined in the case of arbitrary varying and/or multiaxial stress histories.  Nevertheless, 
damage in such cases develops inside the material due to the complex action of all the 
stress tensor components, up to final failure of the structure. 

As has been proposed by Ottosen et al. [10], the damage phenomena can be supposed 
to occur when the point P representing the stress state - for instance in the principal 
stress space - is outside a so-called endurance surface which can be usefully represented 
by a mathematical function (Fig. 1).  The endurance surface can be assumed to depend 
on the stress invariants and on the deviatoric stress invariants.  A very general endurance 
surface function can be written as follows: 
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where 521 ,....,, aaa  are material constants.  The dependence of the stress invariants and 
deviatoric stress invariants ( 32321 ,,,, JJIII ) on the stress tensor σ  and on the effective 
deviatoric stress tensor es , respectively, is shown in Eq.(1).  Further, note that the stress 
tensor bs  plays the role of a back stress tensor, and 0σ  is a material parameter. 

From the above assumption to consider the effective deviatoric stress tensor es , the 
endurance surface can change in a fashion similar to that for kinematic or isotropic 
hardening in the context of plasticity.  The present model, simply based on the damage 
evaluation, has the advantage that it does not require any determination of a critical 
plane and any cycle counting algorithm to quantify the fatigue life, because it simply 
considers the progressive loading damaging effects developed step by step on the 
material. 

 

Damage evolution 
Damage increment can be assumed to occur when the stress state (represented by esσ, ) 
is outside the endurance function (when 0),( >eE sσ ),   while  no damage  is assumed  to 
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Fig. 1. A schematic view of the endurance function in the principal stress space 

 
occur when 0),( ≤eE sσ .  Such a damage phenomenon occurs if both the following 
conditions hold: 

0),( >eE sσ  ,     0),( >edE sσ  (2)
i.e. when the stress state is outside the endurance function and such a representative 
point moves far away from such a surface. 

The amount of damage D  at a given point of the structure must be evaluated by 
considering a so-called ‘deterioration process’ of the mechanical characteristics of the 
material. 

Since damage is a nondecreasing function during the load history, i.e. 0≥D , the 
condition 0≥dD  is verified at every load step during the whole fatigue process.  The 
final collapse of the material occurs when damage is complete, that is to say, when D  
reaches the unity ( 1=D ). 

In order to describe the progressive damage phenomenon, an evolution equation is 
needed to measure the damage increment.  It can be postulated that the amount of 
damage rate, dD , depends on the increment dE  (between two subsequent time history 
stress states, 1−i  and i , Fig. 2) of the endurance function values: )()( 1−−= ii PEPEdE . 

The damage increment can be assumed in the following form: 
dEEAdD B ⋅⋅=  (3)

where A and B are material constants.  Two different cases can arise as far as the damage 
increment calculation is concerned: 
(a) The two subsequent stress values ii   and  1−  lead to 0)( >iE σ  and 0)( 1 <−iE σ .  In such 
a case, the above difference can be defined as follows: 

0)(0)()()( 1 >=−=−= − iiii PEPEPEPEdE  (4)

(b) The two subsequent stress values ii   and  1−  lead to 0)( >iE σ  and 0)( 1 >−iE σ .  In such 
a case, the above difference can be defined as follows: 

0)()( 1 >−= −ii PEPEdE  (5)

 
Endurance function evolution 
As is stated above, the endurance function ( )eE sσ,   depends on the stress tensor σ   and 
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Fig.2. Definition of the endurance function evaluation ),( sσeE  for the stress states iσ  and 1−iσ  
 
on the effective deviatoric stress es , that is defined through the difference bss −  between 
the applied deviatoric stress s  and the back stress tensor bs  ( bs  quantifies the evolution 
of the endurance function during the loading history).  Such a back stress tensor can be 
assumed to evolve according to the following relationship: 

)( b
h

b dECd sss −⋅⋅=  (6)
In other words, the back stress evolution occurs in a direction parallel to the deviatoric 
stress difference ( )bss −  and is proportional to the power h  (which is assumed to be 
equal to 1.0 hereafter) of the endurance function increment dE . 
 
 
MODEL CALIBRATION 
 

The above described model for damage assessment in complex load history situations 
can be applied to simple uniaxial cyclic constant amplitude stress situations. 
 

Constant amplitude uniaxial fatigue loading: fatigue strength at a given number of 
cycles 
For a periodic stress history (the stress state is always inside the endurance function E ), 
it can be deduced that 0 ,0 == DdD   and  0sconstes === bb d  since  , i.e. ess −=e .    
If the periodic constant amplitude stress is uniaxial, the stress point P moves along one 
of the principal axes, and its value always ranges into the interval maxmin σσσ ≤≤ .  In 
such a case, the endurance function can be simplified as follows: 
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where the implicit summation notation on repeated indexes has been assumed.  The 
minimum and maximum extreme stress values in a cycle can be written as follows: 

am σσσ −=min  and am σσσ +=max  (where mσ  is the mean stress and aσ  the stress 
amplitude).  Equation (7) can be rewritten by considering that, for such a case, 

3/2,11 mbs σ= , 3/,22 mbs σ−= , 3/,33 mbs σ−= .  The effective stress tensor and the 
effective deviatoric stress tensor become: 
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The non zero stress invariants and the deviatoric stress invariants assume these values: 
27/)(2      ,3/)(       , 3

3
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At the two above extreme cases of the stress value, the endurance function is given by: 
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and the mean value of the two above equations is: 
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or equivalently: 
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where Fat.limσ  is the fatigue strength at a given number of cycles for zero mean stress 
uniaxial cycles, and p  is the slope (usually negative) of the straight line in the Haigh 
diagram representing fatigue strength at a given number of cycles for constant amplitude 
stress against the mean stress of the loading cycles, which is usually able to satisfactorily 
fit the experimental data.  The parameters 40   , aσ  can be rewritten as follows: 
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i.e. they can be related to known material constants or to other parameters of the model. 
 
Constant amplitude uniaxial fatigue loading: finite life situation 
In the simple case of constant amplitude loading with zero mean value, 0=mσ , leading 
to failure after N  loading cycles, some relationships can be found between the damage 
parameters.  In such a particular case, the invariants assume these expressions: 

27/2   ,3/   ,0  ,0  , 3
3

2
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and the damage increment becomes: 
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where HM ,  are constants.  During one single cycle of loading (Fig. 3), the damage is 
given by: 

δγβα −− ⋅=⋅=== ∫ DDNdDD
cyclecycle 22/1

11  (16)

since failure ( 1=D ) occurs after N  loading cycles.   Further, NDD 2/1== −− δγβα . 
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Fig. 3. Constant amplitude cycling loading: zones of damage development 

 
Damage develops only in the intervals βα −  and δγ − , where the stress state is 

assumed to cross the endurance function at point α  and γ , i.e. 0)( =−= γα σσE .  By 
evaluating the damage developed during the interval βα − , we get (Fig. 3): 
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Finally, it can be written the following expression: 
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i.e. the coefficient A  results to be related to the coefficient B as follows: 
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where aσ  is the stress amplitude of the constant amplitude stress cycles. 
 
 
PARAMETER ASSESSMENT BY A GENETIC ALGORITHM 
 
Optimisation setting of design or experimental parameters in several engineering fields 
can be tackled by algorithms simulating the natural evolutionary process of life, also 
known as Genetic Algorithms (GAs) [11, 12].  Each GA is based on the Darwinian 
survival of the fittest principle, and iteratively improves the current solution by applying 
genetic concepts.  By repeating the evolution procedure until a given tolerance is 
attained, the optimal condition can approximately be achieved. 
 
Determination of the model parameters through a Genetic Algorithm 
A Genetic Algorithm (GA) is here employed to find out the optimum values of the 
model parameters 521 ,....,, aaa  (that define the endurance function E ), of the parameters 

BA,  (that define the damage increment) and of the parameters hC,  (that define the back 
stress evolution).  By examining a generic multiaxial stress history and by knowing the 
experimental time ft  at which the failure occurs (i.e. 1=D ) for a given material under 
such a multiaxial stress history, the estimation error e  can be written as follows: 

1)( −= ftDe  (20)
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where )( ftD  is the damage evaluated through the above model by using the experimental 
time ft  at which the final failure occurs.  The parameters 521 ,....,, aaa , 0σ , BA, , hC,  
can be found by minimising such an error [13] through a proper iterative GA procedure. 
 
 
NUMERICAL TESTS AND DISCUSSION 
 
In the present section, the fatigue failure behaviour of the steel 18G2A under random 
non-proportional bending and torsion is examined [14].  The mechanical characteristics 
of such a steel are: conventional fatigue strength MPaaf 270=σ  at 2.375 106 cycles and 
ulimate stress MPau 535=σ .  Firstly, by considering a simple constant amplitude cyclic 
uniaxial test, the coefficients CBAaaa ,,,,, 541  are determined (whereas the remaining 
coefficients are assumed for simplicity to be equal to 1,032 === haa ).  The mean 
values of the coefficients obtained by considering the results related to two points on the 
Wöhler curve (Fig. 4a) are: ,03095.01 =a  ,0750.14 =a  ,1945.05 =a  ,147.8 −= EA  

,1349.0=B  2050.0=C .  As can be noted, by introducing the above model parameters in 
the proposed endurance function, the Wöhler curve pattern is well reproduced by the 
numerical simulation (see dot symbols in Fig. 4a).  By performing the genetic procedure 
in the cases of multiaxial random loading [14] with MPaMPa 130,475 maxmax == τσ  and 

MPaMPa 210,420 maxmax == τσ  (Fig. 4b), the obtained mean values of the coefficients 
are: ,0301.0,0700.1,0309.0 541 === aaa  ,1405.2 −= EA  0371.0,0795.0 == CB .  The 
simulations of other different multiaxial stress histories are represented in Fig. 4b 
making use of the above obtained coefficients. 
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Note that the obtained numerical results are within a scatter band with coefficient equal to 
2.0 (dashed lines in Fig. 4b) and 3.0 (dash-dot lines in Fig. 4b) with respect to experimental 
time to failure. 
 
 
CONCLUSIONS 
 
In the present paper, the problem of fatigue life assessment of structural components 
under a complex multiaxial stress history has been examined through a fatigue damage 
evaluation.  Such a damage is assessed through the definition of a proper endurance 
function (which depends on the stress invariants and deviatoric stress invariants), a 
suitable damage increment expression and the back stress evolution.  The parameters of 
the proposed model are determined through a Genetic Algorithm (GA) once one or more 
complex stress histories and their effects on the material fatigue life are known. 

The above model presents the advantage to not require any evaluation of a critical 
plane and any cycle counting algorithm to quantify the fatigue life, because it simply 
considers the loading process step by step and its effect in terms of damage. 

Finally, some complex stress histories have been analysed in order to assess the model 
parameters to be used in the material fatigue strength evaluation under general varying 
multiaxial stress states.  The obtained results show a satisfactorily ability of the model to 
simulate the fatigue failure behaviour of materials under uniaxial or complex multiaxial 
stress histories. 
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