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ABSTRACT. A multiaxial fatigue criterion that takes explicitly into account the defect 
size was developed in a previous study [1]. The material is assumed to contain defects 
modeled as cracks. The criterion is developed within the LEFM frameworks. Non-
singular terms in the asymptotic developments of stresses at crack tip were considered. 
A critical elastic distortional energy is used as a yield criterion for the crack tip region. 
The elastic domain of the crack tip region is viewed as an endurance domain in fatigue. 
With this approach, the defect size effect in the Kitagawa and Takahashi diagram [2] 
and the hydrostatic stress dependency in the Dang Van [3] criterion are both 
successfully reproduced. In a previous study [4] a new methodology based on FE 
computations was developed in order to determine the elastic domain of a material 
containing a crack in a (KI, T) diagram. The yield surface as determined from FE 
computations was shown to provide a good estimate of the experimental endurance 
limit as well for HCF load as for CCF load. Besides, the influence of the material 
constitutive behavior on the endurance limit of the material was studied numerically by 
assuming various constitutive equations, elastic ideally plastic behaviors, linear 
hardening and the material behavior identified for a Ti-6Al-4V alloy. Results are post-
processed to generate Dang Van and Haigh diagrams, yielding satisfactory results. 
 
 
INTRODUCTION 
 
In a defect free material, fatigue damage is usually found, according to Miller [5, 6], to 
occur within secluded grains favorably oriented for plastic slip. Well below the 
macroscopic yield stress, a grain can cyclically plastically deform and form intrusions 
and extrusions at the surface, if the maximum resolved shear stress amplitude in that 
grain exceeds the crystallographic yield stress. A micro-crack can then initiate and 
propagate until the complete degradation of the structure. 
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If the material contains defects, fatigue damage is promoted in their vicinity by the 
same mechanism. However, since defects can act as stress-raisers, fatigue damage takes 
usually place below the endurance limit of the defect free material [2, 7, 8] and [9]. 
However, it was shown by Kitagawa and Takahashi [2] that the fatigue limit is reduced 
by the presence of a defect only if the size of that defect exceeds a transition length 
defined by the empirical equation of El Haddad et al [7]. Above the transition length, 

LEFM applies and the defect can be considered as a crack, with a size (√ area) defined 
by Murakami et al. [9] as the square root of the projected area of the defect in the plane 
that sustains the maximum principal stress. 

Billaudeau [8] performed experiments on specimens in C36 Steel that contained 
manufactured defects with different sizes and geometries. Their results showed that the 

defect can be considered as a crack and characterized by the √ area parameter provided 
that the stress concentration factor Kt exceeds 2. Thieulot [1] showed that the small 
crack effect could be described by considering not only the stress intensity factor (SIF) 
K I but also the T-stress (the fisrt non-singular term of the elastic field at the vicinity of 
the crack tip) because of the scale effect induces by this one. For this reason, in the 
following defects are modeled as cracks so as to formulate a biaxial fatigue criterion 
that takes into account defects. In this approach, the finite element (FE) method is used 
to determine the elastic domain of the crack tip region for a given elastic plastic 
behaviour of the material. The elastic domain is then viewed as an endurance domain in 
fatigue. It is important to mention that in both cases the frontier of the domain is 
conventional. The frontier of the elastic domain is defined through an offset that is 
adjusted using the non propagation threshold SIF of the material ∆Kth. The elastic 
domain of the crack tip region is provided in terms of LEFM quantities. So as to express 
it in terms of fatigue quantities an additional parameter is required (a crack length a0) 
which is adjusted using the fatigue strength at 106 cycles.  
 
 
1 DETERMINATION OF THE ELASTIC DOMAIN 
 
1.1 Stress intensity factor, T-stress and critical plane 
 
So as to express the stress intensity factor, it is assumed that the crack is a penny-shaped 
crack embedded in an infinite body lying in a plane defined by its normal n. Let 
consider a point of the crack front defined by its normal t. Let σn

∞ be the normal stress 
and σt

∞ be the projection of the stress tensor along the axe parallel to the crack plane. 
According to Wang [10], we have: 
 

 ( ) ( )2 1 2.
. . . . . . . .

2I n t n n tK a T with n n t t
νσ π σ σ σ σ σ σ

π
∞ ∞ ∞ ∞ ∞+= = − = =

 

(1) 

 
These formulas allow to show the scale effect introduced by the non-singular term. 

Indeed the SIF depends on the crack geometry while the other doesn’t. This could 
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explain why the fatigue strength doesn’t depend on the crack size when this one 
becomes small enough [2]. 

We assume that the crack plane is that one that sustains the maximal principal stress. 
Indeed, there is always a potential site for initiation of cracks oriented in this direction 
provided that the material contains enough grains. 
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∞

 

σn
∞

 

σt
∞

 
n 

t 

 
Figure 1. Schematic of a straight crack front in an infinite body 

 
1.2 Research of the endurance domain by FE method 
 
We assume that the material obeys the Von Mises yield criterion, which is a critical 
distortional energy density criterion. We also consider that the load applied in the case 
of a material which contains a crack is described by the SIF and the T-stress to account 
for the scale effect. The residual stress at the vicinity of the crack tip is described by the 
displacement of the elastic domain in the (KI, T) plane. Therefore the location (KIX, TX) 
of the center of the yield locus of the crack tip region is defined has an internal variable. 

In order to express the evolution law of (KIX, TX) with plastic deformation, variables 
should be introduced so as to characterize plastic deformation within the plastic region 
at the global scale. The velocity field in a domain around the crack tip is determined 
using the FE method and then partitioned by some formulas [4], into discontinuous field 
through the crack plane (associated with KI) and continuous component (associated with 
T-stress) and then finally projected onto a basis of reference fields for each mode. 

That basis contains an elastic reference fields, solutions of an elastic FE computation 
for either KI or T-stress equal to 1 MPa.m1/2 and 1 MPa respectively, and two plastic 
fields obtained using a proper orthogonal decomposition, after the partition onto 
continuous and discontinuous field through the crack plane, and non-dimensioned so 
that their intensity factor, ρI and ρT, could be read respectively as the CTOD and the 
crack widening by plastic deformation. 

The formulas of the partition onto discontinuous and continuous fields are [4]: 
 

 

( ) ( ) ( )( ) ( ) ( )( )2. , , , , , , , , ,I EF EF EF EF
X r r X Xv x t v r t v r t v r t v r tθ π θ θ π θ= − − + + −ɶ

 

(2) 

 

( ) ( ) ( )( ) ( ) ( )( )2. , , , , , , , , ,I EF EF EF EF
Y Y Yv x t v r t v r t v r t v r tθ θθ π θ θ π θ= − + − + − −ɶ

 

(3) 
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( ) ( ) ( )( ) ( ) ( )( )2. , , , , , , , , ,T EF EF EF EF
X r r X Xv x t v r t v r t v r t v r tθ π θ θ π θ= − − − + − −ɶ

 

(4) 

 

( ) ( ) ( )( ) ( ) ( )( )2. , , , , , , , , ,T EF EF EF EF
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(5) 

 
where EF

rv  and EFvθ are the components of the velocity field in a polar basis. The 

continuous part is associated with the T-stres and the ρT contributions and the 
discontinuous with KI and ρI. 

Finally at each time increment the velocity field ( ),EFv x t

 

is approached by either by 

an elastic projection ( ),ev x tɶ

 

or by an elastic plastic projection ( ) ( ), ,e iv x t v x t+ɶ ɶ : 
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(6) 

 
With that approach ρI and ρT are a condensed measure of the plastic deformation rate 

within the crack tip region. The relative error between the calculated velocity field and 
the approached one is defined respectively by C1R, if an elastic approximation is used 
and by C2R if and elastic plastic approximation is used: 
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(8) 

 
If C1R = C2R an elastic approximation is just as precise as an enriched one, the crack 

tip region is considered as elastic. With that criterion it is possible to determine from the 
results of FE computations, the frontier of the elastic domain, for various histories and 
loading directions, and therefore to find the position (KIX, TX) of the centre of the elastic 
domain and its evolution with ρI and ρT. For more details see [4].  
 
 
2 RESULTS 
 
2.1 Identification of ∆KITH for different elastic-plastic constitutive laws 
 
The material used for this study is a titanium alloy (Ti-6AL-4V) for which the elastic-
plastic constitutive law had been identified by Le Biavant-Guerrier [11].  
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The yield criterion is f = 0 where: 
 
 
 f S X R= − −

 

(9) 

 ( ).. 1 b p
OR R Q e−= + −

 

(10) 

 
2

. . . .
3 PX C X pε γ= −ɺ ɺ  (11) 

 
where S  is the deviatoric stress tensor, X is the centre of the elastic domain, R is the 

size of the elastic domain and p is the cumulated strain. The material parameters are 
gathered in Table 1. This material model will be noted model (1) in the following. 
 
 

Table 1: Ti-6AL-4V material data [11]. 

E (GPa) ν RO (MPa) Q (MPa) b C (MPa) γ 

119 0,29 800 -240 9 105000 300 
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Figure 2. (a) Evolution of |C2R-C1R| for different alternating SIF in MPa.m1/2 (circle – 
10, square - 15 and triangle - 20) in the case of a mean SIF equal to 20 MPa.m1/2,  

(b) Evolution of |C2R-C1R| for different mean SIF in MPa.m1/2 (circle –10, square - 20 
and triangle - 30) in the case of an alternating SIF equal to 10 MPa.m1/2. 

 
To identify the criterion, the FE model is subjected to 30 decreasing uniaxial load 

cycles in mode I for differents average and alternating stress, so that the material 
reaches its saturation regime in the crack tip region. For this material, the non 
propagation threshold is equal to ∆KIth=10 MPa√m. The value of |C1R-C2R|, is 
therefore adjusted at 8.10-3 so that the yield point corresponds to the non propagation 
threshold when material hardening is saturated (Figure 2-a). For all mean values of load 
and initial amplitude of load, the value of |C1R-C2R| is always the same to reach ∆KIth.  
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This work had also been done for different elastic plastic constitutive laws in order to 
study their influence on the Haigh diagrams. The parameters of the models are 
summarizing on Table 2. Figure 3 shows the hardening behaviour of these models in the 
case of a tension load. The different models were chosen to frame the material behavior 
identified. 

 
Table 2: Some elastic-plastic constitutive laws which bound the reference behaviour 

 

Elastic-plastic constitutive laws E ν Ro C |C2R-C1R| 

Elastic ideally plastic with yield stress 
equal to the yield stress of the material (2) 

119000 0,29 800 1 0,01 

Elastic ideally plastic with yield stress 
equal to the maximum stress of the 

material (3) 
119000 0,29 1120 1 0,005 

Kinematic hardening (4) 119000 0,29 800 30164 0,005 
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Figure 3. Elastic plastic constitutive laws simulations in the case of a tension load 

(circle – model (1), cross – model (2), square – model (3) and triangle – model (4)). 
 

2.2 Post-processing in a shear stress / hydrostatic pressure diagram 
 

In order to identify the crack length a0 of the criterion, the frontier of the elastic 
domain for a load ratio equal to -1 is plotted in a shear stress / hydrostatic pressure 
diagram for different crack length (a cylindrical crack is considered [10]). The frontier 
of the elastic domain is compared with the Dang Van curve and it is assumed that a0 is 
the crack length for which the distance between them is minimal (Figure 4-a). We can 
also plot the evolution of the elastic domain for different load ratios (Figure 4-b). 

In Figure 5, the borders of the elastic domain for a chosen mean SIF and for different 
material constitutive laws are plotted. This diagram shows the high importance of well 
describing the material behavior to obtain representatives results. Indeed, the size of the 
elastic domain (fatigue strength) depends on the constitutive law chosen. 
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Figure 4. (a) Elastic domain for different crack length (circle – 50 µm, diamond – 150 
µm and cross – 5 mm) obtained with model (1). Comparison with the Dang Van 

criterion [3] (empty square – fatigue strength in tension: 560 MPa and full square – 
fatigue stress in torsion: 411 MPa [12])  

(b) Position of the elastic domain for different mean SIF and T-stress (diamond – KI=0 
MPa.m1/2 – T=0 MPa, square – KI=3 MPa.m1/2 – T=-230 MPa,  

cross – KI=7 MPa.m1/2 – T=-537 MPa and circle – KI=10 MPa.m1/2 – T=-766 MPa). 
The direction of the load is plotted in dashed line. 
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Figure 5. Comparison of the yield surfaces of the crack tip region, for a set of different 

material constitutive laws. The mean SIF is 7 MPa.m1/2, and the mean T-stress is  
-537 MPa (diamond – model (1), cross – model (2) and circle – model (3)).  

 
2.3 Building Haigh diagrams 
 
With Eq. 1 and by knowing the evolution of the center of the elastic domain, one can 
plot a Haigh diagram for which the stress is defined as the normal stress of the crack 
plane. We may note the strong influence of the constitutive law on the curve in Figure 
6. It seems that the curve which most fit the experimental curve is that corresponding to 
law identified for the material. However, Haigh diagram shown (Figure 6-b) does not 
correspond to the material studied, so only trends can be compared. Furthermore, the 
simulated loading is not a tension load (see Figure 4-a). 
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Figure 6. (a) Haigh diagram generated for different material constitutive laws (circle – 

model (1), square – model (2), triangle – model (3) and cross – model (4)). 
(b) Experimental Haigh diagram in tension load [13] for a Ti-6Al-4V alloy. 

 
CONCLUSION 
 
A method was developed to determine the endurance domain in fatigue from FE 
analyses. The elastic domain is viewed as an endurance domain in fatigue. The frontier 
of the elastic domain is defined through an offset that is adjusted using the non 
propagation threshold SIF of the material ∆Kth. It was shown that the same offset can 
be used whatever the mean SIF, or the initial SIF loading amplitude.  

The elastic domain of the crack tip region is provided in terms of LEFM quantities. 
So as to express it in terms of fatigue quantities an additional parameter is required (a 
crack length) which is adjusted using the fatigue strength at 106 cycles, for the TiAl4V 
titanium alloy, a crack length of 150µm was identified. Once identified the parameters 
can be used to determine the endurance domain (a 106 cycles fatigue life) for various 
loading histories. For instance, the post-treatment routine shows that a mean stress 
effect can be viewed as a displacement of the endurance domain. This result is very 
useful to predict the fatigue strength in LCF+HCF conditions.  
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