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Abstract Experimental multiaxial Kitagawa diagrams are preed for cast A356 T6

containing natural and artificial defects. Resulise obtained for three different
loadings: tension, torsion and combined tensiorsitor, for a load ratio R = -1. The

experimental critical defect size determined is 460 100 4m in A356 T6 under

multiaxial loading. Below this value, the microstture governs the fatigue limit mainly
through the SDAS. We compared four theoretical agghes to simulate Kitagawa
diagram for multiaxial loading: Murakami’s equatipa defect is equivalent to a crack
using Linear Elastic Fracture Mechanics, the CiaticDistance Method (CDM)

proposed by Susmel and Taylor and the Defect St@rsslient (DSG) approach

proposed here. It is shown that CDM and DSG methlpds good results but need
three fatigue data for the identification.

Material and experimental results

The material employed in this study was Low-Presdbie Cast (LPDC) strontium
modified A356 (Al-7Si-0.3Mg). Tensile testing hassulted in a modulus of elasticity
of 66 GPa, Poisson's ratio of 0.3, a yield strerafth64 MPa and an ultimate tensile
strength of 317 MPa. While all specimens came faastings made with permanent
steel dies, the majority of specimens came fromedge-shaped casting, and a lesser
number were cut directly from an automotive whddéle wheel casting was actively
cooled during solidification while the wedge cagtimas passively left to cool. As these
two casting types provided a wide range of soldifion conditions, so too did the
specimens from a defect and microstructure stamtlpbinerefore, the fatigue behaviour
characterized in the current work is directly apglile to commercial castings.
Experimental Kitagawa diagrams are reported hear¢hi® three different loadings. All
Kitagawa diagrams are presented with the same stalbi-linear diagram presentation
style. The defect size parameter used is the ‘gr@ameter proposed by Murakami [1].
Cast A356 T6 contains different types of defect® akported by [2-4]. Defects can be
gas pores, shrinkages, oxides films or inter-metaticlusions. Figure 1 presents the
experimental Kitagawa diagram under pure tensi@hRas -1. In all samples, the initial



defect size was easy to determine and the fraptaree was always perpendicular to the

direction of the maximum principal stress. Thetfrema
the relative high critical defect size: the tesé Al and
the fatigue limit (8 % reduction). The materialssnsit
bigger than 50Qum under tension. It is interesting to p
on the type of defect.
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Figure 1: Kitagawa type diagram for A356-T6 under tensiors H.

Figure 2 presents the experimental Kitagawa diagnaner pure torsion and R = -1.
The experimental points presented on the curvewb&l@O um are classified as either
‘no defect’ or ‘not identified defect’. The samplbave been separated with different
defect size between 0 and 1@ but it is only in order to make the graph cléais not
related to the defect size because there is no.fildteremarkable conclusion on the
Kitagawa diagram under torsion is the scatter. fetigue limits vary from 55 to 95
MPa for samples with ‘no defect’ or ‘not identifietefect’. This represents a huge
scatter compared to the other results obtaineth&oother load cases.
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Figure 2: Kitagawa type diagram for A356

800 900 1000

-T6 under torsiors RL.

Figure 3 presents the experimental Kitagawa diagnager combined tension-torsion

and R

-1. In this curve, no artificial defectse anvolved, only natural ones.



Macroscopic fractures surfaces are similar to tengines: flat surface in the plane
perpendicular to the direction of the maximum ppactstress with a clear identification
of the initiation area. The Kitagawa curve showseay small influence of 50Qum
defect. In fact for defects below this size, itrasehat there is no influence of the defect
on the fatigue limit.
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Figure 3: Kitagawa type diagram for A356-T6 under tensiorsitm, R = -1.

From the previous fatigue results obtained on AB6&ontaining artificial and natural
defects, we can conclude that the critical defeet that does not affect the fatigue limit
is relatively large. It ranges from 300 to 50t depending on the loading type. It is
also interesting to observe that when the defedescribed by the ‘area’ parameter, an
artificial defect behaves similarly to a shrinkagean oxide film against fatigue limit. It
is another demonstration that this parameter idlyrgaowerful to describe the
morphology of a given defect. From the pure torsesults, it is not so easy to find the
initial defect size due to the complex topologytld fracture surface and the multiple
initiation sites. This last point should be studietb more details especially because we
were not able to find any fatigue results undesitor on A356 T6 with experimental
characterization of defect size in the literature.

Comparison of Multiaxial fatiguecriteria

LEFM describes crack propagation threshold withaheplitude of the stress intensity
factor AK, a function of crack length;aand stress amplitud&do.. The defect size is
given trough the ‘area’ parameter that is trans&nmto a semi circular crack here.
The relation between the fatigue limit and the deseze is given by:

AKth,eff
YyV2r/area

Where Y is the crack shape factor ah, . is the effective stress intensity factor
threshold. With a spherical defegt: 2. A«
Vs

Ao, =

=15mpa/m fOr A356-T6 alloy; this value

theff



was not experimentally determined in our material fstom a large compilation of
published data from [5-10]. Murakami proposes tpr@sent the defect as a surface
entity and introduces thgarea parameter to describe defect size. He justifias th
choice using fracture mechanics concepts. Obsenamgpropagating cracks in a small
stressed zone around de defect, he considers ridataace threshold corresponds to
crack growth threshold. He shows that the maximiress intensity factor Knaxis
linearly related to the/area parameter for different crack geometry and thekslithe
endurance threshold and this size parameter. Hevsshibat for a given Vickers
hardness, fatigue crack growth threshold dependislyrnan /areaparameter. Murakami
has proposed an empirical equation based on thextdeize (area) and the material
hardness to predict the fatigue limit of mater@staining small defects.
Murakami proposed the following empirical relatidos tension loading:

A(H, +120){1— RT
( area)lle 2

With  A=143for surface defects and=156for internal defects angl= 0226+ H, *10™.
For torsion loading and surface defects, the fatigmit is given by the following
equation:

_ 093H, +120) [1-R]”
Iy = 1/6 [ }

F(b/a)Jarea) "L 2
With  F(b/a) =0.0957+ 211(b/a) - 226(b/a)* + 109(b/a)* — 0194b/a)* and
b/a=1for spherical defects. For combined tension-tor¢a@ding, the fatigue limit is
given by the following relation:

AH, +120){1— RT

(@)1/6 2

Whereo, is the maximum principal stress, is the minimum principal stress

andk =-018 for cracks emanating from a round defect. Theeetan parameters that
have to be identified for Murakami’s relations: tn@croscopic Vickers hardness, (¥

80 MPa for A356 T6) and the b/a parameter (b/afer spherical defect). Murakami’s
equation is very simple to identify but the limitat is mainly due to the description of
the stress state that is not able to take intowddor a general multiaxial loading. The
‘critical distance’ approach and the ‘gradient’ areeds a multiaxial fatigue criterion to
be applied. In this paper, we decided to use thivalgnt stress proposed recently by
Vu [11] that aims to describe the multiaxial belwavior complex loading using
invariant approach. This equivalent stress needig amalytical computations but we
could use another criterion so that the followiegults comparing the approaches are
not depending on the criterion.

a-quu = \/yl‘]IZ (t)2 + y2‘]22,mean(t)2 + y3| f (Il,a' Il,m) < IB
See reference [11] for more details. The valueg ,of,, )., 8 anda depend on the
strength of the metal and are identified using theameters_, f, andR . For the

W

o, +ko, =
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A356 T6 alloy, v, = f3 —a1avpa @ B

¥, = 065,y,=0.8636 anda =1.

The second input data needed by both ‘criticabgist’ and ‘gradient’ approaches is the
stress distribution around the defect. In orderaimpute local stresses around the defect
represented here by a spherical void, the analytiemry of Eshelby have been used.
This CDM is based on the approach proposed by Suame Taylor. [12] This
approach describes the influence of the defecutiirahe measurement of the stresses
to compute the equivalent fatigue stress at a gdistance from the defect. We need
therefore the evaluation of the stress field arothreddefect as explained before. The
maximum equivalent stress is calculated at thécafitlistance L/2 from the tip of the
notch. The fatigue limir. is established as follow:

L) _
s34

With othe nominal applied stress.
The parameter we have to identify to use thisegah is the parameter L/2. This
distance is the distance from the notch tip to pent whereo,,, = 3. We need

therefore an experimental fatigue limit for a giwaafect size to make the identification
of L/2. The following case has been used, =85vPa for Jarea.; =400um. It has been

found that L/2 = 79um. Nadot, Gadouini (DSG craedi[13, 14] proposed to compute
an equivalent stress that includes the effect efdi#fect through the description of the
stress gradient around the defect. The criteriomrigen as follow:

g

eqVuMax

. O eqvues
0., =0 —p, " < B

eq eqVuMax 9 \/_
area

o is the maximum equivalent stress calculated atithef the defect andr, ...,

is the nominal equivalent stress calculated famftbhe defect. To use this criterion, the
parameterb, has to be identified. It has the dimension of aglenThis parameter

allows accounting for the defect geometry and ikuated using fatigue limit of
material containing a known artificial defect. Idépnation is performed on the
reference loading case (_, =85MPaandyarea. =400um):

b =+area. [UEQVuMaX " Oeqvueo J
g Te!

eqVuMax - ﬁ

=t,=80MPa and R, =317MPa so

eqVu,Max

The calculation of the stress field around the cleie performed using the analytical
computation explained before. Under tension, @itdistance and gradient approaches
are very good for the values but this is not ssipg because one experimental point is
used for the identification. The trend is also vakcribed. Murakami’s equation leads
to non conservative result but the trend is webBcadded. LEFM gives conservative
results with a good trend. Under torsion, all apgtes are relatively good for values
and trend; expect Murakami that is again non covagie and critical distance that tend
to assess a small allowable defect size. Under cwdhoading, all approaches are non



conservative except Murakami. Again the criticalede size is largely underestimated
by the critical distance theory.
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Figure 4: comparison between experimental results and stinok(tension, R -1).
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Figure 5. comparison between experimental results and stirook(torsion, R -1).
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Figure 6: comparison between experimental results and stiooka(tens-tor, R -1).



Figure 7 gives another viewpoint on this compariégnplotting the error between
simulation and each experimental result for ther fapproaches and all load cases.
Negative values are related to non conservativesagsent and positive to conservative
ones. We can also average the absolute error giyezach approach; this leads to the
following result LEFM = 19 %, Murakami = 20 %, dcil distance = 11 % and gradient
= 9 %. From this general average comparison wecoaclude that the description of
the defect through the elastic stress field (gratdoe critical distance approach), gives
better results that LEFM or Murakami. But if we lude in the comparison the
‘identification cost’, then Murakami’s equation reams very good because you can give
the fatigue limit of the material for different @&et sizes, three load cases using only the
macroscopic hardness of the material. LEFM gives @ah average interesting results
related to the fact that only one experimental patar is used: the effective threshold
stress intensity factor for long cracks. Both catidistance method proposed by Susmel
and Taylor and gradient one proposed by Nadot acel gn average but you have to
describe the elastic stress field around the immtuand get three experimental fatigue
limits including one with a defect. It is importatd note that elastic computation of
stresses is relevant in the case of A356-T6 becfatiggie limit is half the yield stress
so that there is a very little amount of plastitythe tip of the defect.
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Figure 7: Quantitative comparison between simulations amemental results for the
four approaches tested.

CONCLUSIONS

- In cast A356-T6 submitted to multiaxial fatigugatling, fatigue cracks can initiate
either on casting defects or inside the microstmgctBoth scales are in competition for
the localization of cyclic plastic deformation thiatluces the initiation of the crack that
leads to failure.

- When the crack initiates on a defect, it can baliferent types: oxide, pore, or
shrinkage.

- The critical defect size that does not affect fltegue limit is 400um +/- 100um in
A356 T6. This result is obtained for both artificend natural defect and tension,
torsion and combined loading for a load ratio RL.= -



- Multiaxial Kitagawa type diagram are simulatedngsfour different approaches:

Murakami, LEFM, ‘critical distance’ and ‘gradientResults shows that Murakami’'s
equation gives mainly non conservative results®b56-T6 with an average error of 20
% error. LEFM is mainly conservative with an avexragror of 19 %. Critical distance

and gradient are both equivalent with mainly covetive results and average error of
respectively 11 and 9 %.
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