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ABSTRACT. This paper aims to investigate the effectiveness of 1D numerical models in 

representing the global and local behaviour of reinforced concrete tension ties. These 

simplified approaches, mainly based on bond, neglect the contribution of stress 

diffusion in concrete blocks between cracks, which has been recognised as one of the 

most influencing parameters, especially for the evaluation of crack width. To investigate 

the influence of this assumption, a simplified 1D model has been here developed and 

verified through comparisons with reliable experimental data, as well as with results 

provided by a more refined 2D Finite Element model. The main results have shown that 

simplified models appear to be suitable to investigate local behaviour of the analysed 

elements and can be adopted to perform extensive parametric studies investigating the 

main variables influencing crack width. 

 

INTRODUCTION  

The presence of cracks in reinforced concrete (RC) structures influences many aspects 

of their behaviour, particularly concerning serviceability, durability, aesthetics and force 

transfer [1]. Several experimental and theoretical studies have been directed to the 

determination of crack width and spacing, pointing out the most influencing parameters 

and providing relationships for their determination. Anyway, the problem of the 

evaluation of crack width is still open. In order to understand the involved mechanisms, 

researchers preferred to analyse tension ties, which can be studied easier than beams 

and whose results can be extended to any other tension zone.  

One of the difficulties encountered in the calibration of crack formulae arises from 

the statistical dispersion of experimental data, both regarding material properties 

(particularly concrete tensile strength), and the measured quantities (maximum or 

average crack widths, initial or stabilised crack spacing). Moreover, crack widths can be 

measured at surface, at bar level or at midway, and the type of adopted instrumentation 

(microscope or extensometer) has a relevant influence too. From experimental and 

numerical studies, two main phenomena have been recognised as the most important: 

diffusion of stresses in concrete blocks delimited by cracks [2, 3], and bond between 

reinforcing steel and concrete [4]. Recently, Beeby [5, 6] has questioned the role of 

bond on crack width, which seems to be overshadowed by diffusion of stresses. In [5] 



the critical variable defining cracking behaviour has been indeed recognised in the 

concrete cover rather than in the bond parameters, which are however assumed as 

fundamental in the classical theory of cracking. Concrete cover also influences the crack 

shape, since crack width at the concrete surface is wider than at bar surface [7]. For 

these reasons, in order to completely understand the stress transfer mechanisms of a 

tension tie, proper 3D or 2D numerical models should be adopted so to consider an 

effective local bond-slip law and the diffusion of stresses. Anyway, for simplicity, the 

problem is usually studied in one dimension, that is along the tension tie axis, by 

describing the behaviour with equilibrium and compatibility equations [8], neglecting 

stress diffusion. In this paper a numerical 1D model has been developed to study the 

effect of bond on crack width. The model has been validated with experimental data and 

then its effectiveness in reproducing the physical reality has been also discussed by 

comparing the obtained results with those of a more refined 2D Finite Element model.  

 

 

PROPOSED 1D NUMERICAL MODEL FOR TENSION TIES 

 

For the analysis of a RC tension tie, i.e. a steel bar surrounded by a concrete prism 

(Fig. 1a), a numerical model based on bond between steel and concrete has been 

developed. The model has been derived from a previous work [9] on RC tensile 

members strengthened by FRP plates, by removing the FRP contribution.  

 

Kinematics, equilibrium and compatibility equations 

The transverse cross-section of the concrete prism is assumed to remain plane after 

deformation. Hence, with reference to Fig. 1b, concrete and steel bars are subjected to 

uniform axial strains, denoted by εc and εs respectively, and the slip s at concrete-steel 

interface is defined as the relative displacement s = us − uc of two points belonging to 

steel and concrete that were initially in contact. The slip s is associated to a shear stress 

 at the interface (Fig. 1a), which is ruled by a suitable local bond-slip relationship 

τ(s) = ks(s) s, being ks a secant stiffness. Bond produces a variation of forces in steel and 

concrete. Considering the free body diagram of an element of infinitesimal length, 

equilibrium and compatibility equations for concrete and steel bar are: 
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where nb and  are the number and diameter of steel bars, As, Ac and Es, Ec are the areas 

and the Young modulus of steel and concrete, respectively. 
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Figure 1. Basic assumptions on (a) equilibrium conditions and (b) kinematics. 

 

Constitutive and interface laws 

Reinforcing bars are considered to be linear elastic, as well as linear elastic is the 

behaviour of concrete in tension until the reaching of its tensile strength fct. When this is 

attained, a transversal crack appears and the fictitious crack model is used to define the 

cohesive tensile stresses σct as a function of the fictitious crack opening w. Furthermore, 

as highlighted in several displacement-controlled tests, when a new transversal crack 

appears and grows, a partial closure of previously formed cracks occurs. Therefore, both 

loading and unloading curves are defined, following the cyclic model proposed by 

Hordijk [10], Fig. 2a. 

Bond behaviour between reinforcing steel and concrete is modelled by applying the 

classical monotonic bond-slip relationship proposed in MC2010 ([11], Fig. 2b). A 

scaled-down bond strength due to reduced boundary restraints close to the free surfaces 

(i.e. member ends and transversal cracks) is also considered according to [11]. More in 

details, bond stresses are reduced by a factor  = 0.5 x /  ≤  1 for those parts of the 

reinforcement at a distance x ≤  2 from a transverse crack. Also in this case a cyclic 

behaviour is introduced (Fig. 2b), since the appearance of a new crack and the 

consequent reduction of axial load causes unloading at steel-concrete interface, with 

slips that in some cases may even reverse their sign [9]. Anyway, the damage caused on 

bond strength (evaluated accordingly to [11]) can be neglected, since the cyclic 

behaviour seems to be not so significant, due to the small values of residual slips and, 

consequently, of dissipated energy.  

 
Figure 2. Constitutive laws: (a) concrete in tension [10], (b) bond-slip model [11]. 



Numerical solution through Finite Difference Method (FDM) 

The system of differential equations that governs the problem (Eq. 1) can be rewritten in 

compact form as: 
 

Lxxxx  0)(),()( yyAy     (2) 
 

where y(x) = {Ns(x)  Nc(x)  us(x)  uc(x)}
T
 is the vector collecting the unknown functions. 

Boundary conditions at the two ends x = 0,  L of the member, represented in Fig. 3 

for both displacement and load control, can be written as: 
 

ayByB  )()0( Lba ,     (3) 
 

where vector a takes different forms if the axial force P or, alternatively, the axial 

elongation ∆L is prescribed. The extended form for matrices A(y,x), Ba , Bb and vector a 

are reported in Appendix A. 
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Figure 3. Boundary conditions at the ends of the tensile member.  

 

Eqs. 2 and 3 represent a non-linear boundary value problem that is solved herein 

through FDM. Following the algorithm proposed in [12], the interval [0, L] is divided 

using N nodes at uniform distance h, i.e. 0 = x0 < x1<···< xN = L. For the j-th node 

(0 < j < N), the derivative in Eq. 2 is replaced by its finite difference approximation 

y'j+1/2 ≈ (yj+1 − yj) / h centred at xj+1/2. Finite difference equations, together with 

boundary conditions (Eq. 3), lead to the following non-linear system: 
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where Sj = - I / h - A((yj+yj+1)/2, xj+1/2) / 2, Rj = + I / h - A((yj+yj+1)/2, xj+1/2) / 2 and I is 

the identity matrix. To solve the system, the external action P or ∆L is applied in steps. 

For the generic step, the solution is obtained iteratively updating the secant stiffnesses 

in Eq. 4 and using as initial guess the solution found at the previous step.  



When the tensile stress in concrete reaches the strength fct in the j-th node, a 

transversal crack is introduced in concrete by replacing the j-th row of system (Eq. 4) by 

the internal boundary conditions Bc yj+Bd yj+1= b (wj), where the crack width 

wj = uc,j+1 − uc,j . Matrices Bc and Bd are reported in extended form in Appendix A.  

 

 

MODEL VALIDATION 

 

The effectiveness of the proposed procedure has been verified through comparisons 

with significant experimental results on tension ties presented by Wu & Gilbert [13, 14]. 

The attention has been focused on two specimens, named STN12 and STN16, whose 

geometrical details are represented in Fig. 4. For concrete and steel mechanical 

properties, the values reported in [14] have been adopted, that is fct = 2.0 MPa, 

fc = 21.6 MPa, Ec = 22400 MPa, fsy = 540 MPa and Es = 200000 MPa. The considered 

experimental tests were carried out under displacement control, by applying a 

monotonically increasing axial deformation at the ends of the steel bar. As the applied 

load increased, the evolution of some variables (i.e. the development of crack pattern, 

the specimen elongation and the steel strains) has been experimentally monitored, so 

allowing some interesting comparisons with the results obtained from numerical 

analyses. These latter have been performed by considering the proposed 1D model 

implemented into a Matlab routine, as well as a 2D FE model (Fig. 4) taking into 

account both bond effects and stress diffusion in concrete, so to compare their 

effectiveness in representing the global and local behaviour of the considered ties.  
 

 
STN12: = 12 mm; STN16 := 16 mm 

 

Figure 4. Dimensions (in mm) of the considered tension ties [14], FE mesh and 

qualitative axial stress distribution in concrete blocks limited by cracks. 

 

2D Finite Element Modelling 

As regards 2D finite element analyses, taking advantage of the symmetry of the 

problem, only one half of each tie has been modelled, by placing the axis of symmetry 

at mid-height of the transversal cross-section, along the steel bar axis (Fig. 4). Two-

node linear beam elements have been used for reinforcing bar, while four-node plane 

stress membrane elements with full integration have been adopted for the surrounding 

concrete (Fig. 4). The corresponding nodes, respectively belonging to concrete and 

steel, have been linked together by adopting 2D connector elements, called 

"translators", available in the adopted FE code library (ABAQUS, [15]). These provide 

a slot connection between the nodes and align their three local axis directions, so 

allowing for a finite slip between them. To this scope, an elastic-plastic behaviour, 

properly calibrated on the basis of the adopted MC2010 bond-slip law, has been 



assigned to these elements, while a linear elastic behaviour has been adopted both for 

concrete and reinforcing steel elements. The presence of cracks has been taken into 

account by using a discrete approach, which consists in generating double coincident 

nodes along some predefined cracked sections, whose position is known from 

experimental results. At the beginning of the analysis, these double nodes have been 

linked together through rigid beam connector elements, which enforce them to have the 

same displacements, so to model tension tie behaviour in the uncracked stage. As load 

increases, these connections have been progressively removed on each cracked section, 

so to simulate the experimental crack formation (Fig. 4). Numerical analyses have been 

performed under loading control, by applying a monotonically increasing axial load to 

the external nodes of the reinforcing bar.  

 

Comparisons between numerical simulations and experimental results 

To better compare the results provided by the two numerical approaches, simplified 1D 

analyses have been also carried out by neglecting both the cohesion at crack surfaces 

and the reduction in bond strength near free surfaces. Moreover, the position of cracks 

and the cracking loads have been forced to be coincident with the experimental 

evidences, even if a quite similar crack pattern could be also obtained automatically 

through the proposed FD procedure.  

A first comparison has been performed in terms of axial load-average strain 

response, as reported in Fig. 5. As can be seen, both the simplified 1D model and the 2D 

FE simulation provide a quite similar response, which fits quite well the experimental 

behaviour, both in the first cracking stage and in the last branch of the curve, where a 

reduction of tension stiffening contribution due to bond deterioration can be observed as 

the loading increases. At this last stage, the experimental response tends indeed to that 

of the bare bar, probably due to an extensive micro-cracking near the bar itself, which is 

not correctly represented by the two considered numerical models. Similar results have 

been also obtained in [14], where it is underlined that the MC2010 bond-slip law tends 

to overestimate the tension stiffening contribution at the stabilized cracking stage. 

Furthermore, the introduction of the damage coefficient  only slightly improves the 

numerical response. 

As regards tension ties local behaviour, Figure 6 shows the comparisons in terms of 

force distribution in steel along the bar axis for different loading levels for STN12 

sample. Similar results have been also obtained for sample STN16. In the experimental 

tests, 25 strain gauges were fixed onto the surface of the central part of the deformed bar 

at 25 mm centres, so to measure the variation of steel stresses as loading increases [14]. 

The steel force has been subsequently determined as Ns = s Es As. As can be seen from 

Fig. 6, both the 1D and 2D FE models are able to correctly capture the local effect of 

damage on bond caused by crack formation, even if some differences can be observed 

for bigger values of the applied load (P = 40 kN), since the experimental results 

highlight the presence of a sixth primary crack which has not been recognized in the 

experimental crack pattern scheme. 

The distribution of tensile forces in concrete along the bar is shown for both STN12 

and STN16 samples in Fig. 7, for a fixed value of the external load corresponding to the 



formation of the last observed primary crack (respectively equal to P = 40 kN and 

P = 75 kN). Finally, Table 1 summarizes the calculated and experimental values of 

crack widths w at concrete surface in the stabilized cracking stage. As can be observed, 

both the two considered models provide a reasonable estimate of maximum crack 

openings, while the average value of crack width is generally overestimated. 
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Figure 5. Comparisons between experimental [13] and numerical results for (a) STN12; 

(b) STN16 specimens, in terms of applied axial load-average axial strain. 
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Figure 6. Comparisons between experimental [13,14] and numerical results for 

specimen STN12 in terms of steel force distribution along bar axis. 

(a) STN12 (b) STN16 
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Figure 7. Comparisons between experimental [13,14] and numerical results for (a) 

STN12; (b) STN16 specimens, in terms of concrete force distribution along bar. 

 

Table 1. Measured and calculated crack widths in the stabilized cracking stage. 

 STN12 STN16 

P [kN] wavg [mm] wmax [mm] P [kN] wavg [mm] wmax [mm] 

Exp. [13] 40 0.185 0.300 75 0.215 0.325 

1D model 40 0.249 0.309 75 0.272 0.332 

1D damage 40 0.258 0.331 75 0.282 0.347 

2D model 40 0.243 0.318 75 0.269 0.332 

 

 

CONCLUSIONS 

 

As shown from the comparisons between numerical and experimental results, the 

proposed 1D model is able to correctly describe the local and global behaviour of 

axially loaded members, despite its intrinsic limitations, mainly related to its simplified 

hypotheses and limited computational efforts. For the considered case studies, the 1D 

model provides indeed the same response as 2D FE analyses, in which the diffusion of 

stresses is explicitly taken into account. As a consequence, it can be argued that the 

local behaviour of the investigated elements - and consequently the estimate of crack 

width, which is of primary importance at SLS - is mainly related to bond, which has 

been included in both numerical models. Anyway, a better prediction of the involved 

variables could be obtained through a proper improvement of the adopted bond-slip law, 

so to better include the effects of concrete damage due to primary cracking, as well as 

bond deterioration under increasing steel stresses. Further developments of this work 

will primarily concern these aspects and a more extensive validation of the proposed 1D 

model with more experimental tests, so to make it suitable for performing an extensive 

parametric study. The latter could be a powerful tool for investigating the relationship 

between crack width and bond parameters, like bar diameter, independently of the 

dispersion of material properties, which is unavoidable in experimental tests.  

 

 

(a) STN12 (b) STN16 



APPENDIX A 

 

Considering matrix A (Eq. 2), all the terms are nil except the following ones: 

)/(1)/(1 2,41,34,23,24,13,1 ccssssss AEAAEAKAKAKAKA   

where Ks = nb   ks.  

For the boundary conditions, in case of load control the non-zero terms of Ba , Bb and 

a (Eq. 3) are: 

PaBBBBB bbaaa  12,41,12,43,32,2 11111 , 

whereas, in case of displacement control, they become: 

LaBBBBB bbaaa  12,43,12,43,32,2 11111 . 

At crack formation, the terms of Bc , Bd and b are: 

cct

dddd

ccccc

Ab

BBBB

BBBBB







2

3,42,32,11,1

3,42,32,22,11,1

1111

11111
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