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ABSTRACT. Due to the repeated passages of the wheels, rolling contact fatigue cracks 
can appear in the surface or subsurface of the rails. These defects can propagate and 
lead to the rail failure. A two-scale frictional contact fatigue crack model developed 
within the X-FEM framework is used to solve the crack problem. Realistic residual 
stresses, coming from dedicated software developped by SNCF are introduced in the 
propagation simulation via projection of the asymptotic mechanical fields. Crack 
growth is performed taking into account this permanent non-uniform field. Results 
show that SIFs ratio is modified by those residual stresses influencing the crack 
propagation path. 
 
 
INTRODUCTION   
 
The numerical crack growth in tribologic fatigue is a large research topic which involves 
the understanding and the modelling of numerous local phenomena like confined 
plasticity or interfacial frictional contact. Contact with friction between the crack faces 
notably occurs in rolling contact fatigue problems. These possible time-dependent, 
multi-axial, non proportional loadings may lead to crack, up to the development of 
very complex 3D crack network. These defects, such as squats and head-checks, lead 
to the rail failure and potentially to a derailment. Costly maintenance operations are 
deployed to avoid such a situation. 

To improve the understanding of the crack initiation and propagation 
mechanisms, a numerical modelling tool has been developed thanks to a long-term  
ollaboration between French railway organizations (SNCF, RATP, RFF), rail producer 
(Tata Steel) and research institutes and universities (LaMCoS/INSA Lyon,  



MS/Polytechnique, MECAMIX, IFSTAR) within the consortium IDR2 (Initiative for 
Development and for Research on Rails). The first step of this modelling tool deals with 
a railway multi-body dynamics simulation to give contact conditions at the wheel-rail 
interface. In the next step, the cyclic mechanical state of the rail is calculated by means 
of a 3D finite element simulation and an original, time-cost efficient direct stationary 
algorithm. Then, a fatigue analysis of the rail is performed with the DangVan criterion. 
The final step consists of modelling the crack growth. This paper focuses on this last 
point: modelling fatigue crack growth in the rails taking into account frictional contact 
between the cack faces, mixed-mode propagation and realistic residual stresses. 

Model the crack propagation under rolling contact fatigue (RCF) requires taking 
into account different phenomena acting on different scale. At the structure scale, the 
wheel-rail contact imposes a very high gradient close to the wheel-rail contact area 
and lead to a multi-axial non-proportionnal loading of the cracks. Moreover the 
repeated traffic of the wheel over the rail leads to an asymptotic stresses in the rail 
that will influence the crack propagation. All these solicitations imply complexe 
sequences of opening, sticking and sliding conditions at the crack scale.  

Previous works about fatigue crack growth in the rails are available in the 
literature. Some authors have studied the role of liquid entrapment using FEM analysis 
[1,2,3] or BEM analysis [4,5] in the crack growth mechanism. This effect is not 
considered in this work. Other works have studied the influence of different 
parameters such as elastic foundation [6], the crack initial geometry [6,7,8,9] or the 
crack face friction coefficient  [6,8,9,10] on the stress intensitys factors (SIFs). In this 
paper we present 2D results of fatigue crack growth in the rails taking into account 
realistic residual stresses using a two-scale X-FEM/LATIN crack model with interfacial 
frictional contact. 

 
 

TWO-SCALE CRACK MODEL WITH INTERFACIAL FRICTIONAL 
 
We consider a cracked body        where contact and friction can occur along the 
crack faces   

  and   
 . Under small displacement and small strain assumptions, we 

assume the interface       
   

 

 
as an autonomous entity with its own behavior 

possibly nonlinear. This fracture problem is divided in a global problem (structure scale 
     ) and a local problem (crack scale   ) (see Fig. 1). The global problem is defined 
with its own primal and dual variables,   the displacement field and   the Cauchy 
stress tensor respectively. The local problem is defined with its own primal and dual 
variables,   is the interface displacement field and   is the interface traction field 
respectively. Let   be the outward unit normal to        and    is the outward unit 
normal to   . We assume quasi-static formulation and write the governing equations 
as follows for the global problem at a given time         : 

 



 
Figure 1. Cracked body problem divided into a global problem and a local interface problem. 

 
Using the principle of virtual work we can write the work of the uncracked 

body, the interface problem and the coupling work and obtain a three weak field 
formulation of the problem. Details can be found in [11]: 

      

      

            
                              (1) 

This formulation (Eq. 1) has been stabilised [12] to avoid numerical instabilities.  
At the local scale governing equations are the unilateral contact and Coulomb’s 

law: 
opening                                     (2) 
contact                                    (3) 
sticking                                         (4) 
sliding                                                         (5) 

 
 
X-FEM DISCRETIZATION AND NON-LINEAR SOLVER DEDICATED TO INTERFACIAL 
FRICTIONAL CONTACT 
 
The eXtended Finite Element Method [13] is used to model the crack propagation. In 
this method no explicit representation of the crack is needed. The crack is modelled 
using function enrichments. The crack discontinuity is introduced as a Heaviside step 
function. In addition, branch functions are introduced for all elements containing the 
crack front. Hence, the mesh does not necessarily conform to the crack and both field 
interpolation and remeshing are not required during the possible crack propagation. 
 One assumes that the state vector               is known at time   . 
Within a quasi-static incremental framework, the next stage consists of calculating the 
unknown state vector      at time step     . The LATIN method consists of an 

iterative strategy between a local stage from   
  to   

  
 

   and a global stage from   

  
 

  

to   
   . The local stage corresponds to a set of local equations ((L) on Fig. 2), possibly 

non linear (Eqs. 2, 3, 4 and 5), and the global stage to a set of global linear equations 
((G) on Fig.2) (see (17)). This two-step approach requires search directions    and    
between the set of equations (L) and (G) (see Fig. 2). The process is repeated until 
convergence is reached. The iterative process has been recently optimized to obtain 
the best convergence rate possible [14]. 
 



 
Figure 2. Schematic representation of the LATIN method. 

  
INTRODUCTION OF REALISTIC RESIDUAL STRESSES 
 
The evaluation of the mechanical state in the rail due to the contact stress induced by 
the railway traffic is crucial for the modeling of the rail resistance: plastic deformations 
occur in the region near the contact zone due to repeated rolling– sliding contacts 
between the wheels and the rail. To be realistic, it is necessary to take into account 
this phenomenon which may be very significant for crack initiation and propagation in 
the rail head. It is well known that under repeated rolling contacts, different 
asymptotic mechanical states could occur in the structure: elasticity, elastic 
shakedown, plastic shakedown or ratcheting.  
Determination of the stabilized state in the rail is performed by using sequentially 
VOCOLIN software [16] and the stationary algorithm [17]. First, the contact between 
wheel and rail is evaluated by means of VOCOLIN. Its characteristics, which are number 
and dimensions of contact areas, normal and tangential pressure, can be Hertzian or 
non-Hertzian (se Fig. 3(a)). Then, using the stationary algorithm, the stabilized 
mechanical state (residual stresses and plastic strain distribution) is computed. An 
elastic shakedown is obtained (Fig. 3(b)); all components of the plastic deformation 
tensor are constant along all the streamlines of the gauge corner. As a consequence, 
high cycle fatigue is likely to occur. 

                
(a)        (b) 

Figure 3. (a) Examples of calculated rail/wheel contact area obtained by simulation (VOCOLIN). 
(b) Stabilized longitudinal plastic strain distribution [15]. 



The asymptotic mechanical fields are then projected on the mesh used to model the 
crack propagation (see Fig. 4). Those fields are considered as the initial state of the 
propagation simulation. This state is permanent and non-uniform. No redistribution of 
residual stresses is considered troughout the crack growth. Since only elastic 
shakedown is considered the fields after projection do not required to be re-balanced. 
 

    

Figure 4. Example of 2D-mesh used to model the crack propagation.  

 
CRACK GROWTH UNDER PROCEDURE ROLLING CONTACT FATIGUE 
 
A wheel passage on the rail corresponds to a loading cycle for a crack in the rail. In The 
propagation simulation, whee-rail contact is modeled as a fully sliding herzian load. 
Each cycle is divided in time step corresponding to the position of the wheel with 
respect to crack. For each postion of the wheel, the crack body problem is solved and 
SIFs are computed using integral methods. At the end of a simulated cycle, we have 
the history of SIFs throughout the cycle. Using this history, the crack growth path 
(direction) is here predicted according to Hourlier and Pineau’s criterion already 
validated under non-proportional loading [18]. Finally a dedicated mixed-mode 
propagationis used to predict the crack crack growth rate [9]. In the end of the cycle 
the new crack is created and the corresponding jump cycle is computed thanks to the 
propagation law. The procedure is repeated until no more cycles are required (Fig. 5). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Flow charts of the propagation procedure. 
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Determination of the suitable Hourlier and Pineau criteria 

 

Hourlier and Pineau criteria are actually three different criteria. [18] has already shown 

that       
         

       and    
  

  
          

    
   are suitable criteria for 

fretting-fatigue problems. The same conclusions are here derived (Fig. 7 (b)) from the 
following test case (Fig. 6). The maximal pressure is 845 Mpa, the contat patch 
dimension 2a is 13.5mm and the initial crack is 1mm long inclined with an angle of 45° 
with the upper rail surface. The crack friction coefficient is 0.1 and the friction 
coefficient between the wheel and the rail is set to 0.4. 92 time steps of 0.25mm are 
considered.  The crack in the intial configuration intersects 27 elements of the mesh. 

 
Figure 6. Reference problems 

 

 
(a)         (b) 

Figure 7. (a) SIFs history after the initial cycle, (b)Crack propagation path using the three 
different Houlirer an Pineau Criteria. 

 
   
We can see on the Fig. 7 (b) that two of the criteria predict the same crack growth path 
with the same crack growth rate. The      

 criterion gives a different path. This 
crriteria is based on a similar approach than the maximal tangential stress criterion, 
they are both based on maxima over a cycle. But since the loading is non-
proportionnal this approach is not suitable for propagation under RCF. Hence we use 
the two others criteria to predict the crack growth path in the study. 



Results with simplified residual stresses 

 

We now first introduced simplified residual stress via external loading on the sides of 
the domain (Fig. 8 (a)). 
 

 
(a)          (b) 

Figure 8. Introduction of simplified residual stresses in the model (a) and results (b) 
 
No influence on the crack growth is observed in this case (Fig 8. (b)). It has to be point 
out that the crack is still short in comparison with the wheel-rail contact patch and 
therefore the driving force of the propagation is still the conctact stresses imposed by 
the wheel. It still can be noticed differences on the crack growth rate.  
 

Preliminary results with realistic residual stresses 

 

Preliminary studies with realistic residual stresses have been performed. In this test 
case, the crack is vertical and always opened. It has shown that with realistic residual 
stress field, the ratio KI/KII along the cycle is modified leading to a modification of the 
crack propagation. 

 
Figure 9. Modification of the KI/KII ratio with realistic residual stresses. 

 



CONCLUSION 

 
This paper aims at predicting fatigue crack growth and branch conditions under RCF. A 
two-dimensional linear elastic numerical model for fatigue crack growth has been 
presented including contact with friction at crack interface. The model rests on a three 
weak field formulation using X-FEM and an iterative scheme dedicated to non-linear 
interface problems adapted from the LATIN method. Using the tools already 
developed by SNCF to solve the wheel-rail contact problem and to compute the 
asymptotic streses in the rail, realistic residual stresses has been introduced in the 
propagation model assuming elastic shakedown for the rail.  Specific branching 
critetria and propagation law dedicted to non proportional loading and RCF has been 

used. First results show that the       
      criterion and the    

  

  
      criterion  

are suitable for RCF. Preliminary results have shown that using simplified residual 
stresses, the residual stresses influence the crack growth rate and finally introducing 
realistic residual stresses that the ratio KI/KII is modified and will lead to a different 
crack growth path. 
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