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ABSTRACT. In this study, the effects of small surface defect and small crack on the 

fatigue limit of metallic materials were investigated. As a theoretical framework, 

McEvily’s fatigue crack growth equation was adopted to account for the Kitagawa 

effect, the elastoplastic bahavior in the vicinity of the tip of fatigue crack and the crack-

closure development in a unified manner. Based on the comparisons between the 

theoretical predictions and the experimental data, the predictive capability of the 

present method was examined. Further, the influence of defect size and biaxial stress on 

the multiaxial fatigue behaviors were studied in a systematic manner. Moreover, in view 

of the area -parameter model, our effort was devoted to propose a simple yet 

reasonably accurate equation to predict the fatigue limit. 

 

 

INTRODUCTION 
 

To improve the structural integrity against fatigue failure, thorough understanding of the 

role of small crack is required. In practice, most of fatigue cracks spend the vast 

majority of their lives as short cracks, the behavior of such a flaw is of significant when 

determining the fatigue lifetime. As is well known, the fatigue crack behaviour of short 

cracks differs in a non-conservative manner from that of long cracks. The fatigue limit 

for many steels is dictated by the non-propagating condition of a small crack [1]. 

Accordingly, the boundary between propagation and non-propagation state separates the 

safe from the potentially unsafe fatigue regimes. In general, the structural and machine 

components in service are often in a complex stress state due to biaxial or multiaxial 

loading. Moreover, defects, such as surface flaws and non-metallic inclusions, often act 

as the stress concentration site and they significantly reduce the fatigue strength. 

The purpose of the present study is to examine the effect of biaxial stress on the 

fatigue limit of specimens containing small defects and cracks. To tackle the underlying 

problem, the modified liner-elastic fracture mechanics approach proposed by McEvily 

et al. [2] was adopted. Moreover, in view of the area -parameter model [1], our 

research effort was devoted to propose a simple yet reasonably accurate equation to 

predict the fatigue limit.  
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FATIGUE CRACK GROWTH EQUATION 
 

According to McEvily et al. [2], the fatigue crack growth rate can be characterized by 

the following equation (i.e., McEvily equation): 
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where a is the crack length; N is the number of load cycles; A is a constant that depends 

on the material and the environment; ∆Keff represents the effective range of Mode-I 

stress intensity factor (SIF) given by Kmax – Kop, where Kmax is the maximum value of 

SIF in a cycle and Kop is the SIF at the crack opening level; ∆Keffth signifies the effective 

range of the SIF at the threshold level, a material constant. It is noted that Eq. (1) is 

dimensionally correct. 

To tackle the biaxial fatigue with a stress ratio of R = –1, we rewrite Eq. (1) as : 
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where [3]: 
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In Eq. (3), re is termed an effective crack length that can account for the Kitagawa 

effect; F is the elasticplastic correction factor for crack length; Y is a geometric 

correction factor for SIF, n and p are the far-field applied stress normal and pararell to 

the crack plane, respectively. Further, k is a material constant that governs the rate of 

crack closure development; and Kopmax is a value of SIF when a macroscopic crack 

opens. The effective crack length, re is calculated based on the fatigue limit of smooth 

specimen, w0 at R = –1 as follows: 
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where YS signifies the yild strength for uniaxial tension. 

In essence, the following three modifications are considered in Eq. (3). 

・A modification to overcome the inability of the standard approach to predict fatigue 

crack growth behavior in the regime of short cracks. 

・A modification to account for the elastic-plastic behavior. 

・A modification to deal with the development of crack closure in the wake of a newly-

formed crack. 



In this study, rather than performing a three-dimensinal stress analysis, we conducted 

a two-dimensinal stress analysis to determine Y in Eq. (3) for the sake of simplicity. 

Concerning the elasticplastic behavior or calculation of F, we adopted a modified 

Dugale strip yield model. 

 

Consideration of Elasticplastic Behavior 

By taking advantage of the Dugdale model [4], the modified crack length [5] under 

uniaxial tension can be calculated as: 
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In Eq. (5), 

 represents the far-field applied stress. On the other hand, under the biaxial 

loading condition, the stress component parallel to the crack plane (i.e., non-singular 

stress) influences the plastic behavior near the crack tip [6]. Therefore, we employed the 

following yield strength that is based on the von Mises yield condition [6]: 
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To make use of Eq. (6), we calculated the local stress at the crack tip for x based on the 

elastic stress analysis. It is noted that concerning a crack emanating from a hole under 

uniaxial loading condition, the value of YSbi approaches Y as the crack propagates (i.e., 

long crack). Calculation of the elastic-plastic correction factor, F in Eq. (3) is not a 

trivial task for a crack emanating from a stress concentration site (e.g., hole). Therefore, 

we adopted a numerical method to calculate F and the procedure is explained elsewhere 

[7]. 

 

 

EXPERIMENTS 
 

The used materials were an annealed 0.37 % carbon steel (JIS S35C) and a 

quenched/tempered Cr-Mo steel (JIS SCM435). Table 1 lists the mechanical properties 

of each material. 

 

Table 1.  The mechanical properties. 

 

Material 

Yield 

strength 

(MPa) 

Tensile 

strength 

(MPa) 

Elongation 

(%) 

Vickers 

hardness 

(HV) 

w0

 

(MPa) 

S35C 328 586 48 164 230 

SCM435 858 947 57 306 490 



The smooth specimens were a round-bar with the minimum diameter of 8.5 and 10 

mm. After heat treatment, a 30m thickness of surface layer was removed by electro-

polishing, and thereafter pre-cracks or slits was introduced into the surface to simulate a 

defect, as illustrated by Figure 1. A single cylindrical hole is referred to as a 1-hole 

defect and a defect connected with two or three adjacent holes is referred to as a 2-hole 

or 3-hole defect. To pre-crack the specimens, fatigue cracks were introduced at a crack 

starter of 1-hole or 2-hole defects, and they were grown to total surface lengths, 2a0, of 

150m, 160m, 200m, 300m, 400m, 600m, and 1200m, respectively. Another 

type of small defect was a hole with slits made by the focused ion beam (FIB) technique 

at the both ends. The major axis of cracks and slits was perpendicular to the direction of 

the maximum principal normal stress. All specimens were annealed at 873K in vacuum 

to remove the residual stresses. The area -parameter model [1] was used to evaluate 

the size of initial defect into area .

Uniaxial fatigue tests were carried out by using a rotating bending machine with an 

operating frequency of 50-60 Hz. The torsional fatigue tests were performed by using a 

servo-hydraulic axial/torsional testing machine with an operating frequency of 30-45 Hz. 

All fatigue tests were conducted by applying the sinusoidal loading with a stress ratio 

of R = –1. Table 2 summarizes the material constants adopted for the present analysis. 

Based on Eq. (3), the threshold condition can be predicted by seeking the condition of 

M = 0 (i.e., da/dN = 0).  

 

 
 

 
(a) S35C 

 

 
 

 

 

 

(b) SCM435 

 

Figure 1.  Shapes and dimensions of artificial defects (in m) 

1-hole defect 

d = h = 100, 500 

3-hole defect 

d = 160, h = 500 
Pre-crack 

d = 160, h = 140 (a0 = 300) 

Pre-crack 

d = h = 50 (a0 = 75) 

1-hole defect 

d = h = 100, 110 
2-hole defect 

d = 55, h = 97 
Hole with slits 

 

Pre-crack 

d = 50, h = 45 (a0 = 100) 

d = 50, h = 100 (a0 = 150) 

d = 100, h = 80 (a0 = 200) 

d = 160, h = 140 (a0 = 600) 

Pre-crack 

d = h = 50 (a0 = 80) 

 



Table 2.  The material constants used in the McEvily equation. 

Material 
YS 

(MPa) 

k 

(m
-1

) 

Kopmax 

(MPa·m
1/2

) 
Keffth 

(MPa·m
1/2

) 

w0 

MPa) 

S35C 328 6000 3.5 3.0 230 

SCM435 858 25000 3.5 3.0 490 

 

RESULTS AND DISCUSSIONS 

 

By conducting the comparisons between the predictions and the experimental data, the 

predictive capability of the present method was examined. Further, by taking advantage 

of the area -parameter model, a simple yet reasonably accurate equation to predict the 

fatigue limit was proposed. 

 

Comparisons with the Experimental Data 

For illustration, the fatigue limit for 1-hole defect was predicted and compared to the 

experimental data. Since the two-dimensional stress analysis was conducted with Eq. 

(3), the area of 1-hole defect for prediction was evaluated as [1]: 
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where d is the diameter of hole. Moreover, the fatigue limit of smooth specimen under 

biaxial loading can be estimated based on Eqs. (3) and (4): 
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Figure 2.  Comparisons with the experimental data. 

(a) S35C (b) SCM435 
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As shown by Figure 2, the predictions are in reasonable agreement with the 

experimental data. It is noted that when area is small (i.e., the size of defect is small), 

two different predictions (“Hole + Crack” and “Equivalent Crack”) render similar 

results. Namely, small defect can be regarded as a crack. With respect to the effect of 

biaxial stress, though the stress biaxility of p/n = -1 significantly reduces the fatigue 

limit, the degradation responses (i.e., the slope of the curve) associated with area is 

seems to be independent of the stress biaxility. 

 

Comparisons with the area -parameter Model 

Figure 3 shows the comparisons of predictions by the McEvily equation and the area -

parameter model. The area -parameter model renders the fatigue limit by the following 

equation [1]: 
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As shown, regarding S35C (Figure 3(a)), two predictions render similar results for a 

wide range of area . On the other hand, the similitude of two predictions in SCM435 

can be observed for smaller area  in comparison with S35C. 

In practice, the area -parameter model does not require a fatigue test to make a 

prediction, and it has been successfully applied for a number of uniaxial fatigue 

problems. Given the successful predictions demonstrated in Figures 2 and 3, it might be 

possible to extend the area -parameter model to the biaxial fatigue problem with the 

aid of the McEvily equation. Accordingly, in what follows, our effort was devoted to 

propose a simple yet reasonably accurate equation to predict the fatigue limit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) S35C (b) SCM435 

Figure 3.  Comparisons with the area -parameter model. 
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Extension of the area -parameter Model for Biaxial Fatigue Problem 

Based on the previous studies [8], we assumed that the fatigue limit can be 

characterized by the following equation: 

 

 n p w     (10) 

 

where w is calculated by Eq. (9),  is a parameter that can accounts for the stress 

biaxility. Based on the fracture mechanics point of view,  = -0.18 can be rendered 

[8][9]. In this study, we estimated the parameter  by making use of the McEvily 

equation. 

Figure 4 shows the relationships between n and p at fatigue limit. The least square 

fit for the predictions with the McEvily equation renders that  = -0.24 for S35C and  

= -0.15 for SCM435, which are close to  = -0.18. It is noted that when the defect is 

crack with a relatively large area (=752m), the experimental data tend to deviate from 

Eq. (10) as shown by Figure 4(b).  

Given the applicability of Eq. (10) demonstrated in Figure 4, the following equation 

is proposed to estimate the fatigue limit based on Eqs. (9) and (10): 
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 (a) S35C (b) SCM435 

Figure 4.  The relationships between n and p. 
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 (a) S35C (b) SCM435 

Figure 5.  Comparisons between the predictions and the experimental data. 

 

Figure 5 shows the predictions with Eq. (11). As demonstrated, when   -0.18, the 

predictions are in good agreement with the experimental data. It is noted that the present 

prediction is straightforward and does not require a complex computer code. 

Concerning the crack with large area  in Figure 5(b), Eq. (11) overestimate the 

experimental data. On the other hand, McEvily equation is in moderate agreement with 

the experimental data (cf. Figure 2(b) and Figure 5(b)) though it is computationally 

expensive. 

 

CONCUDING REMARKS 
 

In this study, the effects of small surface defects and small cracks on the fatigue limit of 

metallic materials were investigated. Based on the McEvily equation and the area -

parameter model, a simple yet reasonably accurate equation was proposed to predict the 

fatigue limit. 
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