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ABSTRACT. In this paper, a critical plane theory dedicated to fatigue crack initiation 
in elastomers is derived. The approach is based on experimental observations which 
state that the initiation of a macroscopic fatigue crack results from the growth of small 
flaws initially present in a bulk material. Our derivation is based on the definition of an 
idealized Representary Volume Element that consists in the distribution of small cracks 
in the bulk material. In order to solve the problem without considering singularities, 
these cracks are assimilated to material surfaces defined in the undeformed reference 
configuration. With the help of the Configurational Mechanics theory, the virtual 
energy release rate associated with all possible changes of position of all possible 
material planes is derived to mimic the growth of small cracks. The critical plane, i.e. 
the plane in which the macroscopic crack will develop, is then defined as the material 
plane that maximizes this quantity. A careful solving of the corresponding optimization 
problem establishes that the critical plane orientation is the eigenvector of the 
configurational (Eshelby) stress tensor associated with its smallest eigenvalues. The 
approach is illustrated on the simple problem of simultaneous tension and torsion for 
which we explicitly calculate fatigue crack orientation. 
 
 
INTRODUCTION 
 
In the last few years, number of papers has proposed predictors for fatigue crack 
nucleation in elastomers subjected to multiaxial loading conditions. By nature, a crack 
nucleation approach claims to be able to capture the onset of a macroscopic crack in a 
yet idealized defect-free material; practically it must be able to determine the most 
probable locus for the growth of a fatigue crack but it can also be able to predict its 
direction. In this latter case, the approach is referred to as a critical plane theory. Most 
of the critical plane theories consist in combining stress components that exert on a 
given geometrical plane, and to determine the plane on which this combination is 
maximized. For metallic materials, number of theories has been derived and most of 
them highlighted the coupled influence of shear and normal stresses; the case of 
polymers has received highly less attention. 



 Our study is devoted to rubber materials. From an experimental point of view, it is 
recognized that the nucleation of a macroscopic fatigue crack is the consequence of the 
growth of microscopic flaws initially present in the material [1,2], and the macroscopic 
crack grows in a plane defined by the multiaxiality of loading conditions [3]. Even if 
some authors recently considered the explicit influence of flaws on mechanical fields 
[4,5], such approaches cannot be managed in structural mechanics. Thus, crack 
nucleation approaches must focus on defect free derivations. Recent phenomenological 
investigations have stated that the relevant mechanical quantities to predict fatigue 
damage in such materials are the true stress tensor but also energy based tensors [6,7,8]. 
For the latter approach, the authors consider the energy necessary for the growth of 
microscopic flaws at the macroscopic scale, i.e. with Continuum Mechanics quantities. 
Concerning the orientation of fatigue cracks, a few critical plane theories have 
established that macroscopic cracks develop in the plane perpendicular to the largest 
nominal strain under proportional multiaxial loading conditions [9,10,11]. 
 Our objective is to overcome the apparent incoherence between studying flaws and 
considering continuous fields. The key concept consists in adopting a realistic but 
implicit model of the distribution of microstructural inhomogeneities. In this way, at a 
given material point we consider all possible material planes and we derive the change 
in energy involved by the change of position of these planes in the undeformed 
configuration. Then, we determine the material plane that maximizes this energy. It 
leads to the critical plane for the growth of microscopic flaws and thus for the 
nucleation of a macroscopic fatigue crack. The theory is derived in the general case of 
homogeneous, incompressible hyperelastic materials under large strain. 
 
 
DERIVATION OF THE THEORY 
 
The Model 
The present theory is based on a simple model of an idealized microstructure which 
evolution under multiaxial fatigue loading conditions is investigated. The definition of 
this model is schematized in Figure 1. 
 We consider a body in the sense of the Continuum Mechanics as shown in Fig. 1(a). 
At this scale, the continuous fields can be defined once a Representary Volume Element 
(RVE) (and then a material point P) has been defined. Classically, the RVE of soft 
materials includes the bulk material, hard inclusions and cavities (Fig. 2(b)). Under 
repeated loading conditions the nucleation of a macroscopic fatigue crack is the result of 
the propagation of microscopic defects that can be idealized as cracks: we define an 
idealized RVE that consists in an isotropic distribution of small cracks as shown in 
Fig. 1(c). Finally, from an engineering point of view, one expects to investigate the 
fatigue properties without considering explicit defects, thus we greatly simplify the 
study of the single crack by replacing it by its corresponding material plane, i.e. the 
oriented plane defined in the reference configuration and that contains the crack, as 
shown in Fig. 1(d). 
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Figure 1. (a) Continuous body. (b) Real RVE. (c) Idealized RVE. (d) Model. 
 
Energy Release Rate of a Material Plane 
In Fracture Mechanics where cracks are explicitly considered, the key quantity is the 
energy release rate, i.e. the energy dissipated during crack growth per unit of newly 
created crack surface area. Although no crack is considered in the present study, it turns 
out that the concept of energy release rate has to be extended to our model. Note that 
along the same line of thinking Mars came up with the  ''Cracking Energy Density'' 
which is an heuristic thermodynamical quantity that attempts to estimate the amount of 
strain energy that is available for the growth of an arbitrarily oriented small crack from 
a Continuum Mechanics point of view [7]. 
 Inspired by Eshelby [12], and Kienzler and Herrmann [13], we define the energy 
release rate of a material plane as the change in energy caused by a material 
displacement of the considered plane. In this way, we consider the RVE in the material 
point P of Fig. 1(d) and we study its deformation. 
 Consider this RVE in the reference configuration (CR) and its deformed state in the 
current configuration (C) as shown in Figure 2(a) and (b), respectively. The material 
plane in the reference configuration is an infinitesimal planar oriented surface dSN and 
it is transformed into dsn through the deformation gradient F. In order to estimate the 
energy release rate of this material plane, we consider a replica of the RVE in which the 
material plane is displaced of δU in the reference configuration as shown in Fig. 2(c). 
Following the classical vocabulary of Configurational Mechanics, this displacement 
takes place in the Material space, i.e. the abstract set of particles that constitute the body 
[14]. As the mechanical quantities are considered uniform and equal to their 
macroscopic counterparts, the material plane in the replica is also deformed into dsn 



(Fig. 2(d)). The displacement of the plane dsn between the original RVE and its replica 
is denoted δu and is equal to FδU. 
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Figure 2. Deformation of a RVE and its replica. 
 
 We now estimate the energy δD that could be dissipated in the material displacement 
δU of the material plane dSN. Similarly as in Fracture Mechanics, δD is equal to the 
opposite of the change in potential energy between the RVE and its replica 
 
  δD = − (δWint − δWext) (1) 
 
where δWint is the change in strain energy in the RVE and δWext is the change in 
external forces that exert on the material plane. They are calculated as follows: 
• The stress is uniform in the RVE, δWext is the scalar product of the Cauchy stress 

vector σn acting on the surface by its displacement vector 
 
  δWext = δu · σnds = δU · FTPNdS  (2) 
 

in which P is the first Piola-Kirchhoff stress tensor. 
• The change in strain energy in the RVE, δWint, is associated with the topological 

change of the material plane dSN. This change in strain energy is the product of 
the strain energy density W(F) (per unit of undeformed volume) by the volume 
deformed throughout the material, i.e. the volume swept by the plane throughout 
the motion (Fig. 2(c)): 

 
  δWint = W (F) δU · dSN (3) 
 
Finally, using Eqs (2-3), the dissipation due to the material translation δU of the 
material plane dSN is given by 



  δD = −δU ·
�
W (F)I− FTP

�
dSN = −δU ·Σ(P )dSN (4) 

 
where I is the identity tensor, and Σ=WI-FTP is the configurational (or Eshelby, or 
Material) stress tensor at point P [15]. Introducing the unit vector Θ  that defines the 
direction of the material displacement and inspired by the definition of the energy 
release rate of existing cracks, we define the energy released during the material 
displacement in the direction Θ  of a material surface with normal N, per units of 
material surface and displacement as 
 

  
G∗ (N,Θ) = lim

dS→0
lim

�δU�→0

δD
�δU� dS = −Θ ·ΣN

 (5) 
 
Determination of the Critical Material Plane 
In amorphous materials, defects are oriented in every possible direction in space. Thus, 
all material planes have the same potentiality to develop a fatigue crack. The only 
difference between given planes is the mechanical loading conditions they experience. 
So, G*(N,Θ) can be calculated for any directions N and Θ  of the space. Thus, it is 
actually possible to determine the infinitesimal material plane and the associated 
infinitesimal material motion that maximize the virtual energy release rate in order to 
deduce the orientation of the material plane that undergoes the most damaging process. 
This critical material plane is then postulated to be the plane of crack nucleation.  
 However, when searching for the maximum of G*, it should be made sure that all 
restrictions on the admissible vectors N and Θ  are taken into consideration: they are unit 
vectors, they must satisfy −Θ ·ΣN ≥ 0  (the process is dissipative) and, due to 
symmetry their scalar product must be positive (they are in the same semi-space). Thus, 
the critical plane is defined by the normal vector ND and the corresponding material 
displacement direction ΘD such that the virtual energy release rate is maximum: 
 
  ΘD ·ΣND = min {Θ ·ΣN ≤ 0 with �N� = 1, �Θ� = 1,−N ·Θ ≤ 0} (6) 
 
 This optimization problem has been carefully solved by Aït-Bachir [16]. In the case 
of isotropic hyperelastic materials, the set of solutions is 
 
  S1 = {(ΘD,ND) = (v,v) : v ∈ ker (Σ− ΣminI)}  (7) 
 
with  
 
  Σmin = min {λ ∈ sp (Σ) : λ < 0}  (8) 
 
where ''ker'' and ''sp'' stand for the kernel of the linear transformation associated with a 
tensor, and its spectrum, i.e. the set of its eigenvalues. From Eqs (7-8), it is predicted 
that the macroscopic fatigue crack will initiate in the plane perpendicular to the 



eigenvector of Σ  associated with its smallest eigenvalues Σmin, and that the normal 
material traction drives the crack nucleation process. 
 Another capability of the predictor that has yet been left out so far is that it also 
predicts the location where the first macroscopic crack  initiates. Indeed, the location of 
the first macroscopic crack is simply understood as the location of the maximum of 
G*(ND,ΘD) over the body. 
 
 
APPLICATION: SIMULTANEOUS UNIAXIAL TENSION AND TORSION 
 
In order to illustrate our theory, we consider the problem of fatigue under simultaneous 
uniaxial tension and torsion. Such loading conditions are the most widely considered to 
experimentally investigate multiaxial fatigue for rubber materials (see for example [7]). 
Here, the calculation steps are not detailed due to a lack of writing space; only 
important results are given. 
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Figure 3. Simultaneous tension and 
torsion of a cylinder. 

 Figure 4. Crack angle: comparison with 
the CED theory [7]. 

 
 Consider a hyperelastic cylinder with uniform cross-section; its length is denoted L 
and its external radius, Re. (see Figure 3). The aim of the study is the derivation of the 
orientation of the first macroscopic fatigue crack. Noting (R,Θ,Z) (respectively (r,θ,z)) 
the coordinates of a material point in the underformed (respectively deformed) 
configuration, the change in coordinates due to simultaneous torsion and uniaxial 
extension is [17] 
 

  
r =

R√
λ

, θ = Θ+ λτZ , z = λZ
 (9) 

 



where λ is the extension ratio in the length-direction and τ is the twist angle per unit 
length. 
 Assuming that the material obeys the incompressible neo-Hookean constitutive 
equation (with constant C) (see for example [18]), it is easy to calculate the deformation 
gradient F, the strain energy W, the first Piola-Kirchhoff stress tensor P and finally the 
configurational stress tensor Σ  (see Eq. (4)). With some algebraic manipulations, we are 
able to analytically obtain the smallest eigenvalue of Σ  
 

  
Σmin = C



 3

λ
− 3−

��
λ2 − 1

λ

�2

+ 2λ3τ2R2
e + λ2τ4R4

e + 2τ2R2
e





 (10) 
 
and the corresponding orientation of the critical plane (the angle of the crack plane Ψ in 
Fig. 3) 
 

  
Ψ =

π

2
− arctan (β)

 (11) 
 
with 
 

  
β =

λ2 − 1
λ + λτ2R2

e +
��

λ2 − 1
λ

�2
+ 2λ3τ2R2

e + λ2τ4R4
e + 2τ2R2

e

2Reτ  (12) 
 
 Here, we compare the present predictions with those of Mars' CED for pure torsion 
and simultaneous uniaxial tension/torsion [7]. The results are presented in Figure 4. 
Results are quiet similar, even if the present predictions lead to smaller values of crack 
angles. Similar differences have been previously highlighted in [8] and were explained 
by the empirical nature of the CED. It is interesting to recall that the CED theory 
necessitates the computation of the predictor for all possible crack orientations and a 
posteriori the determination of the orientation that maximizes it. Here, we prove that a 
unique equation Eqs (11-12) gives the orientation of the fatigue crack.  
 Extending this result to finite element computation demonstrates the relevance of the 
present approach: it highly reduces the necessary number of calculations to determine 
the locus of the macroscopic fatigue crack and the corresponding critical plane. 
 
 
CONCLUSION 
 
In this paper, we have proposed a mechanical model that permits the derivation of 
critical planes for fatigue of elastomers. It is based on an idealized RVE that contains 
not-interacting flaws modeled by material planes in the reference configuration. By 
considering the possible material displacements of these planes, we derive the bilinear 
function that permits to calculate the energy release rates for the growth of microscopic 



flaws. Then, we derive the constrained optimization problem that leads to the 
orientation of the macroscopic fatigue crack and to a possible predictor for fatigue life 
in terms of the configurational (Eshelby) stress tensor. 
 The rigorous derivation proposed here must be considered as a framework to 
investigate more complex problems: incremental method to study non-proportional 
loading conditions, more complex material behaviors such as inelastic or anisotropic 
constitutive equations,.... 
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