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ABSTRACT. One of the most restricting aspects of the biaxial fatigue test is the design 

of the cruciform specimen. Nowadays, with the introduction of the new in-plane biaxial 

fatigue testing machines, based on linear electrical motors, with much lower force 

capacity than conventional hydraulic machines, make the optimization of the cruciform 

geometry crucial for successful biaxial tests. The aim of this paper is to investigate the 

influence of the geometric design on the stress distribution in cruciform specimens and 

optimize the shape of the cruciform specimens under biaxial loading conditions. The 

optimization is performed with two main objectives: to concentrate and initiate fatigue 

damage in the center of the specimen within a uniform stress region, and to minimize 

undesirable phenomena, such as premature failure outside the area of interest due to 

stress concentrations. For treating with the multi-objective optimization problem (MOO) 

presented, a new derivative-free methodology, called direct multi-search (DMS) method 

is used in order to determine the non-dominated points of the Pareto front. The 

evaluation is made with finite element analysis (FEA) software, ABAQUS, which uses 

PYTHON language for scripting. The optimization processes give much improved 

results and are validated by experiments. 

 

 

INTRODUCTION 
 

Biaxial testing is required to study the deformation and fatigue behaviour of a particular 

material. The most common method of biaxial testing employs thin-walled cylinder 

tubes subjected to axial and/or torsional loads and internal pressure. The disadvantages 

of this method are that it has limited loading capacity for simulating the biaxial 

tension/tension loading conditions and it requires the material to be in the form of a 

circular tube, so it cannot be applied to rolled sheet materials and some composite 

material. Therefore, there has been a steadily-growing interest in biaxial testing of 

cruciform geometries (i.e., two-dimensional analogues of the uniaxial tensile geometry).  
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A variety of geometric features have been developed all over the years for cruciform 

specimen design. The first geometry shown in Figure 1, where very thin slits are cut 

into the arms, was proposed by Kuwabara et al. [1] and reports that the slits promote 

uniform strains within the inner part of the gauge area, irrespective of the loading ratio. 

A second feature is a smooth notch geometry added to the four corners of the gauge area 

[2], as shown in Figure 2. The intention is to promote higher strains in the gauge area. A 

third feature is a reduction in thickness within the gauge area to further localize 

deformation there [3]. An example is shown in Figure 3, which contains a central 

“recessed” region (denoted by the solid circle in the gauge area). Combinations of the 

aforementioned features have been proposed in Green et al. [4], examples of these are 

shown in Figure 4.  

  
Figure 1 – Very thin slits cut in the spokes. Figure 2 – Smooth corner notch added 

between the arms. 

  
Figure 3 – Reduction in thickness within the 

gauge area. 

Figure 4 – Combinations of the 

aforementioned three features. 

 

In reference [5], the influence of geometrical discontinuities on the strain distribution 

in biaxial loaded specimens was studied in detail. A numerical optimization 

methodology was proposed by Makris [6] to achieve higher quality biaxial tests by 

modifying the specimen’s geometry. 

In the present paper, the cruciform specimen studied is being tested in a new biaxial 

fatigue testing machine based on a recent technology of linear electrical motors. The 

machine uses four of the most powerful iron core linear motors available in the market 

for industrial applications, and with a new guiding system based on air bearings which 

provide very high precision movement without contact. However, its maximum loading 



capacity is about 4 kN in each direction [7], which is much lower than conventional 

hydraulic machines. Therefore, it is particularly important to optimize the shape of the 

cruciform specimen in order to achieve fatigue crack initiation in the central gauge area 

with such low force involved. 

Direct multi-search (DMS) method is used to obtain the Pareto front relating the two 

objectives functions: (i) maximize stress at the gauge area and (ii) minimize stress in the 

arms/corner. The evaluation of the objective functions was made with the commercial 

software ABAQUS for finite element modeling and solver. The PYTHON language is 

used as interface between MATLAB and ABAQUS programs for scripting all the input 

geometries specimen design. 

 

 

CRUCIFORM SPECIMEN DESIGN 

 

After reviewing numerous cruciform geometries presented in the literature, the 

specimen geometry presented here derives from cruciform geometry with reduced 

thickness at center, Fig. 3. Considering the two main objectives, the first focus goes to 

the minimization of stress concentration in the arms corners from chamfers to circular 

fillets, convex fillets, elliptical fillets, etc., as presented by Abdelhay et al., [8]. The 

second objective is to achieve the maximum stress at the center gauge area in a uniform 

stress region where the fatigue crack initiation should start. The best geometry is found 

to be the elliptic fillet as shown in Fig. 5, which better allocates stresses at the center 

without increasing into the corners. The design variables for the optimization process, 

initial values of each variable and limits are presented in table 1. 

 

 

Figure 5 – Specimen geometry. 

Table 1 – Design variables. 

Variable Init. Min. Max. 

Arm thickness, t 4 3 5 

Minor Ellipse 

Radius, r 
24 22 26 

Major Ellipse 

Radius, R 
57.5 56 59 

Centre spline 

diameter, d 
17 14 20 

Spline exit 

angle,  
60 30 90 

Dimensions in [mm] or [º] 

 

In this specimen the thickness at center was fixed as 0.5 mm, stipulated as being the 

minimum value to ensure good machining conditions, [9]. The center geometry is 

created by a revolving spline with a tangency of 0º at center and exiting with an angle  

at a diameter d. This spline ensures a smooth geometrical transition to avoid stress 

concentration in the critical region. 



MULTI-OBJECTIVE OPTIMIZATION 

 

A constrained nonlinear MOO can be mathematically formulated as, [10]: 
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where x are the design variables, n is the number of design variables, f are the objective 

functions, k is the number of objective functions to be minimized and 1m  and 2m are the 

number of constraint equations. Any or all functions )(xfi , )(
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xgl
and )(
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can hold a 

nonlinear nature. In general, since in MOO there are often conflicting objectives for 

each objective function, the concept of Pareto dominance is used to characterize global 

and local optimality, [10]. A feasible solution of X is called a Pareto optimal if there 

exists no other feasible solution Y such that )()( XfYf ii   for all },...,2,1{ ki  with 

)()( XfYf jj  for at least one },...,2,1{ , kjj  . 

DMS is a solver for multiobjective optimization problems, without the use of 

derivatives and does not aggregate any components of the objective function. It 

essentially generalizes all direct-search methods of directional type from single to 

multiobjective optimization, maintaining a list of feasible nondominated points. At each 

iteration, the new feasible evaluated points are added to this list and the dominated ones 

are removed. Successful iterations correspond then to an iterate list changes, meaning 

that a new feasible nondominated point was found. Otherwise, the iteration is declared 

as unsuccessful. 
 
 
OPTIMIZATION PROCEDURE  

 

As represented in Fig. 6 the optimization starts by establishing the new geometry 

variables (input variables) of the new specimen in MATLAB, regarding all the 

geometrical and objective constrains. Then, these variables are exported to an input file 

which is read by the PYTHON script. Afterwards, the finite element model based on the 

geometry is generated and the ABAQUS “Job” input file created. The ABAQUS is then 

used as a “solver” in order to determine all the stresses in the regions of interest by the 

Von Mises criterion. The design variables are the arm thickness (t), minor ellipse radius 

(r), major ellipse radius  (R), centre spline diameter (d) and the spline exit angle (), 

whose initial values and limits (introduced as restrictions) are given in Fig. 5. Another 

restriction was introduced, limiting the maximum difference of stress on a circular area 

with a diameter of 4 mm below 5%, to ensure that the stress at the centre of the 



specimen is uniform. The objective functions are the f1 the stress at centre (in this case 

the value of stress is multiplied by -1 to solve a minimization problem) and f2 the 

maximum stress in the arm curvature. 

 

 

Figure 6 – The integration software framework. 

 

The finite element model represents 1/8 of the whole specimen, being applied 

appropriate symmetry boundary conditions. A distributed load of 3 kN was applied in 

each arm, which is about 75% of the maximum force available in our test machine. 

Discretization was made with 27315 hexahedral elements with 20-nodes and full 

integration (C3D20 in ABAQUS code), being obtained a regular mesh with 15 m edge 

size elements at centre. The material considered is an aluminium alloy with Young 

modus of 210 GPa and Poisson ratio of 0.3. 

 

 

OPTIMIZATION RESULTS 

 

Table 2 presents the results of several simulations (these are not the optimum results, 

neither represent the pareto front) in order to evaluate the effect of each variable in the 

centre area stress and in the arms. Darker cell identify the parameters that were changed 

relative to a reference geometry with t = 4,0 mm; r = 24 mm; R = 59 mm; d = 18 mm 

and  = 30º. The optimum values, which verify all the restrictions, are presented in the 

last line in bold. 

 

Arms thickness influence, t   

The ratio between the thickness at the arms and the center cannot also be disregarded. In 

fact, they are responsible for the global stiffness of the specimen and consequently the 

stresses accomplished in all partitions. In this work, the thickness considered at the 

center is fixed as 0.5 mm, which is the minimum value that guarantees good machining 

quality, [8]. 
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Table 2 – Influence of design variables on final results. 

t 

[mm] 

r 

[mm] 

R 

[mm] 

d 

[mm] 
 [º] 

Center area 

Stress (-f1) 

[MPa] 

Arms 

Stress (f2) 

[MPa] 

Diff. at 

center 

[%] 

Corner/ 

center 

diff. [%] 

3,0 24 59 18 30 177,5 150,2 1,854 15,354 

4,0 24 59 18 30 152,7 108,4 6,589 29,015 

5,0 24 59 18 30 134,9 83,4 13,452 38,175 

4,0 22 59 18 30 153,0 113,9 6,583 25,578 

4,0 23 59 18 30 152,8 110,9 6,586 27,371 

4,0 24 59 18 30 152,7 108,4 6,589 29,015 

4,0 25 59 18 30 152,5 109,3 6,591 28,344 

4,0 26 59 18 30 152,4 117,5 6,596 22,906 

4,0 24 57 18 30 119,1 81,2 6,569 31,834 

4,0 24 58 18 30 133,6 92,1 6,579 31,046 

4,0 24 59 14 30 138,7 102,8 16,415 25,861 

4,0 24 59 16 30 144,4 102,6 10,197 28,924 

4,0 24 59 18 45 156,3 125,3 2,406 19,832 

4,0 24 59 18 60 159,9 147,1 1,286 8,015 

4,0 24 59 18 75 163,6 171,4 0,904 -4,753 

3,0 22 59 15 30 160.3 130.1 3,705 20,327 

 

Elliptical fillet influence 

The elliptic fillet proposed for the arms corner is managed essentially by two parameters, 

the major and the minor radii. The results from the FEA show that the increase of the 

ellipse major radius also increases stress in the central gauge area, however, the inherent 

stiffness decrease due to the material loss in the corner creates stress concentration. On 

the other hand, the minor radius of the ellipse is directly related with the stress 

distribution in the arms and will also determine a smooth or rough transition in the same 

corner.  

 

Centre spline diameter, d 

The center spline diameter defines the diameter of the region with reduced thickness 

that is created with a spline. This parameter has a strong influence in the stress 

uniformity at center and some influence in the maximum stress at center. If d increases 

the uniformity of stress decreases but the maximum stress value increases. 

 

Spline angle effect,    

The introduction of a spline in the central gauge area, where the thickness reduction 

occurs, turns out to be one of the best ways to avoid stress concentrations and to control 

the amount of stresses transmitted to the corner from the central region. A large stress 

concentration is created in the arms if  increases without a significant increase of stress 

in the central region. 



 

Optimized geometry 

The results obtained from the DMS optimization are expressed in the follow Pareto 

front distribution, see fig. 7, where the optimum value chosen from the non-dominated 

points, contemplates two constrains: maximum stress in the center gauge area (f1) 

assuring a safety factor of 20% between the arms (f2) and the center gauge area stress; 

uniform stress in the central region with less than 5% of difference in a 4 mm diameter. 

This safety factor was stabilized according to our experience in experimental tests. If the 

stress in the arms are below 20% is enough to guarantee that failure will not occur in the 

arms. The geometry and FEM solution corresponding to the optimum point is 

represented in Fig. 8 for 1/8 of the cruciform geometry. This solution is for the 

parameters given in last line of Table 2. 

 

  
Figure 7 – DMS - Pareto Front. Figure 8 – Stress distribution in the 

optimized cruciform geometry. 

Experimental validation of the optimized geometry has also been carried out. Several 

specimens, with a geometry close to the optimized, were successfully tested with the 

aforementioned biaxial fatigue machine, [9], demonstrating that this geometry is 

appropriated for fatigue crack initiation. 

 

 

CONCLUSIONS 

 

The influence of several design variables on centre area stress and in the arms was 

studied for a biaxial specimen appropriate for fatigue crack initiation. In general if the 

design variables are changed in such way that the stress in the centre increases, also the 

stress uniformity decreases and larger stress are created in undesirable regions like for 

example in the arms.  

Geometry optimization based on FEA programing coupled with direct multi-search 

method is an efficient way to determine the best combination of the design variables 

ensuring a high level and uniform stress in the centre of the specimen without creating 

excessive stress in other region that could cause failure outside of the gauge area. 

50

100

150

200

-200 -150 -100 -50

f2
 

f1 



The results obtained from the Pareto front show that there are several optimum 

geometries. From the Pareto front, the designer can pick one of the optimal solutions 

(non-dominated solutions), depending on the relative importance of each objective. The 

results also illustrate the capacity of this DMS model to solve the optimization problem 

in a reasonable amount of time. 

Several specimens were machined and fatigue tests were conducted for crack 

initiation in a low capacity biaxial test machine. It was observed that failure occurs in 

the central region and very good experimental validation was shown. 
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