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ABSTRACT. Multiaxial high cycle fatigue modeling of materials is an issue that concerns
many industrial domains (automotive, aerospace, nuclear, etc) and in wich many progress till
remains to be achieved. Several approaches exist in the litterature: invariants, energy, integral
and critical plane approaches all of there having their advantages and their drawbacks. These
different formulations are usually based on mechanical quantities at the micro or meso scales
using localization schemes and strong assumptions to propose simple analytical forms. This
study aims to revisit these formulations using a numerical approach based on crystal plasticity
modelling coupled with explicit description of microstructure (morphology and texture). This
work has three steps: First, 2D periodic digital microstructures based on a random grain sizes
digribution are generated. Multiaxial cyclic load conditions corresponding to the fatigue
strength at 10’ cycles are applied to these microstructures. Then, the mesoscopic Fatigue
Indicator Parameters (FIPs), formulated from the different criteria existing in the literature, are
identified using the FE calculations of the mechanical fields. These mesoscopic FIP show the
limits of the original criteria when it comes to applying them at the grain scale. Finally, a
statistical method based on extreme value probability is used to redefine the parameters of these
criteria. These new criteria contain the sensitivity of the microstructure variability.

ABBREVIATION AND DESIGNATION

HCF: High Cycle Fatigue

FIP: Fatigue Indicator Parameter

RVE: Representative Volume Element

SVE: Satistical Volume Element

GEV: Generalized Extreme Value distribution
Microscopic length scale: corresponding to the integration points
Mesoscopic length scale; Corresponding to the average density ina grain
Macroscopic length scale: Corresponding to the elementary volume average

INTRODUCTION

In literature, methods for determining the fatignehavior based on multiscale modeling
estimate that the fatigue strength depends on #ieme value statistics of a single



microstructure attribute [1] (for example inclusisize). This is only valid when the considered
element of microstructure is a representative velwstement (RVE). A RVE is the smallest
volume element whose averaged mechanical behaciouverges towards the macroscopic
behaviour of the material. Although the definitiointhe RVE is possible for some deterministic
behaviour aspects (such as elastoplastic behayibigdifficult to evaluate a RVE for the HCF
strength which is macroscopically highly dispersBukerefore the use of a single microstructure
(with a smaller volume than the RVE with regard#hie fatigue behaviour but equal to the RVE
size with regards to the elastoplastic behavionBsdnot make it possible to take into account
the contribution of the microstructural dispersiorthe HCF response. To solve this issue, Liao
[2] used the Monte Carlo method to build statidticdume element (SVE) of a microstructure
with a random distribution of grain sizes and otd¢ions. Despite considering elastic behaviour
of crystal only, Liao showed a good correlationwsstn the results obtained by modeling the
extreme value probability with a Fréchet distribatiand experimental results. Recently,
Przybyla et al. [3, 4] introduced a new framewodking into account the effects of
neighborhood through the extreme values of the eshdorrelation functions to quantify the
influence of microstructure on the fatigue limitdathe contribution of interactions in the
microstructure in the case of uniaxial loading.yBgta used Gumbel distribution function to
describe the extreme value probability of the istdigharameters.

The purpose of this work is, first, to analyze th&rostructure sensitivity (morphology and
orientation) of the FIP corresponding to the adamtaof multiaxial fatigue criteria at the
mesoscopic length scale. Then a statistical studly be used to define new mesoscopic
thresholds for these FIPs, different from the ordithresholds of the macroscopic criteria.
Finally, the capability of the macroscopic criterii@termination to take into account the
microstructure sensitivity will be discussed thrbug comparison between the thresholds
determined by the statistical study of the micuasttire modeling (called mesoscopic) and the
original macroscopic thresholds.

NUMERICAL MODEL

Condtitutive relations

The material parameters considered in this worktlawse of pure copper. This material has a
face-centered cubic crystal structure with the cedunumber of slip systems (12 <111> {110}
slip systems). The behaviour is modeled by cubdstility and crystal plasticity constitutive
law. The crystal plasticity model used in this wdek the one introduced by Meric and
Cailletaud [5]. The cubic elasticity constants, thaterial parameters and the interaction matrix
components have been identified on a high purippeo by Gérard et al. [6].

Grain morphology and crystallographic texture

The simulations performed in this work were don@@2D periodic microstructures [7, 8]. The
method used to create the topology of the aggregeds based on random distributions in size
and shape of ellipses. The CAD model was discrtizg 32000 linear triangular finite
elements (figure 1-(b)) with the generalized platrain assumption. Computed microstructure
contains 200 equiaxed grains (figure 1-(a)), withaaerage of 160 finite elements per grain to
ensure reasonable computation time. Finally, timeloen selection of 200 crystal orientations

was carried out in the Euler space defined bylineetanglesg,,, @,) assuming cubic crystal

symmetry and triclinic sample symmetry. Figure 1 qleows the {100} and {110} pole figures
of these 200 orientations. Given the low numbeor@dntations, this crystallographic aggregate
can be considered as having no preferential otienta
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Figure 1. (a) Grain morphology, (b) Mesh and (d)@Land {110} pole figures showing the
selected crystallographic orientations.

Fatigue loading conditions
Different loading conditions are investigated instisection: uniaxial loadings, and tension

ftorsion loadings with different biaxiality ratiols=0a/ra and different phase shifts. The
selected loading ratio iRy= Ja’mm/aa’max =-1. The combined loading levels equivalent to

the fatigue limit at 10cycles are determined using Crossland criterigrill®ese load levels are
given in Table 3.

Table 3. Tension and torsion stress amplimq¢ra (MPa) used for different load conditions.

loading | Tension | Torsion Combined loading tension/torsion
biaxiality | k=0 K=o | k=025| k=05| k=075 | k=1 | k=2

5 [#=0° |56l0 |036 | 5213 | 435722 3627 30/30 17/34
B | =45 54/13.5 | 47/23 | 38/29 3131 17/345
T | p=90 56/14 | 56/28 | 44/33 34/34 17.5/35

MESOSCOPIC FATIGUE INDICATOR PARAMETERS

The studied fatigue indicator parameters (FIPskvgetected from stress criteria widely used in
the literature. The multiaxial HCF criteria congielé here are Crossland [9], Matake [10] and
Dang Van [11]. These fatigue criteria are generaéfined in the context of continuum
mechanics. In order to evaluate the fatigue cdtemn each computed microstructures, the
usual HCF criterion are projected on the slip systef the crystals. This procedure is repeated
for each crystal considering its local orientat{@h, ¢, #,) and stress state computed by FE for
each loading case. For instance, the shear steg$srvn a given plane is transformed into a
resolved shear stress vector over a slip system.ratation of the crystal in space (defined by
the Euler anglesd, @, ¢,)) covers all the planes and directions of spad¢echvenables to find
the same critical planes and directions (planesdamattions maximizing criterion) than those



obtained by the original criterion (with continuodsrmulation). Table 4 displays the
expressions of FIPs adapted to the crystal scale.

Finally, the parametersr, and B describing the median macroscopic threshold of the
considered criteria are identified from two mediatigue limits for 16 cycles of the considered
material smooth specimens under fully reverseditggsd tension §., =56 MPa) and torsion

(t,, =36 MPa) taken from the work of Lukas and Kunz [12]. Trergmeter/3, is identical for
the three criteria 8, = B, = B, =1_,). The expression oft, are also given in Table 4.

Table 4. Expression of Fatigue Indicator Paramdteis) of the studied criteria.

Criterion I, a
t,—(s,/+/3
Crossland 1, =75, + 0014 max < B a, = J(%)
s,/3
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A comparison between the mesoscopic FIPs predicto the macroscopic (original) criteria
is shown in Figure 2. This comparison shows thesterce of grains from which the FIP
exceeded the macroscopic threshold. The macrostmgshold is not applicable at the grain
scale. This is especially true for Crossland dotewhere most grains are above the threshold.
For other criteria, only a small number of graimseeded the macroscopic threshold. A new
mesoscopic threshold can be defined, which corredgpdo the line linking the most critical
grains (ploted in red in the graphs of figure 2dwéver, this determination method of the new
mesoscopic threshold means that the unique stwdédentary volume is representative with
regards to fatigue. This hypothesis is not accéptalthe case of a non-deterministic behaviour
such as HCF strength. The RVE hypothesis can blaaeg by a statistical analysis of the
microstructure-sensitivity of the different FIP$i§ will be discussed in the next section.
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Figure 2. Locus of the 200 FIPs at the grain lersgile (red dots), and comparison with the

each macroscopic criterion (black dot) in the gzfdension loading. The black straight line is

the experimental macroscopic threshold and thetragght line corresponds to an effective
threshold upper bound for all mesoscopic FIPs deterd from a single microstructure.



MICROSTRUCTURE SENSITIVITY

The HCF strength is related to the critical gratmoge response leads to the maximum value of
the FIP. These extreme values are located at tlseofathe density functions of mesoscopic
responses and are highly sensitive to the microstrel attributes. To study these critical grains,
several statistical approaches are possible. Theatheselected for this work was based on the
extreme value probability.

The extreme value database was constructed byifidegtthe maximum value of FIP for each
statistical colume element (SVE). The number of S\Wias 64: they were obtained by the
combination of 8 random morphologies (equiaxedngaand 8 isotropic textures.

In order to highlight the microstructure sensigviib the FIPs, a comparison between the
mesoscopic predictions corresponding to 64 SVEstlaadwo thresholds defined above (black
and red lines in Figure 3) was performed for tem$t@ding. The black line corresponds to the
macroscopic threshold while the red line passimguiph the critical grain (with the maximum
FIP) in the volume element studied previously cepomnds to the effective threshold (Figure 2).
Figure 3 illustrates this comparison in the caseCobssland FIP. For this criterion the
scatterplot (gray dots) exceeded the two thresholdss observation has motivated the
statistical analysis adopted in this work.
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Figure 3. Crossland criterion predictions at themscopic length scale (black line) and the
mesoscopic length scale (gray dots) for the 64 SMfifisfor symmetrical alternated tension
loading. The black line is an experimental macrpgcthreshold and the red line corresponds to
an upper bound effective threshold for all mesoscB{Ps. This effective threshold correspond
to a single VE studied previously (Figure 3).

GENERALIZED EXTREME VALUES PROBABILITY

Let us consider a random variabtewith the distribution functionF, (X) The n extreme
realizations inn samples of the random variable can be defined as:

Y, =maxX,, X,,...,X,) 1)

The distribution function ol is defined as:

F, (y)=P(Y,<y)=P(X,<y.X,<y,... X, <) )



According to theFisher-Tippet theorem, if there exist two real normalizing sequen(a,$)

nx1"’

(bn)nZl and a non-degenerated distribution (not reducedpoint) G so that:

P(Yna;bn SXJ:F”(%an) - G(x) (3)

n — +oo

G is necessarily one of the three types of distitimst Fréchet, Weibull or Gumbel.
Jenkinson [13] combined the three limit distribnBoin a single parametric form called
Generalized Extreme Value (GEV) distribution depegan a single parametét:

1
(x) _ ex;{—(1+ Ex)_E s &£0,0x/1+8&>0
exp-exg-x)) sé&=0
The & parameter is called extreme index. Its sign intdigdhe type of asymptotic distribution:

Weibull (£<0), Gumbel (€ =0) or Fréchet £>0). The variable(Y, —b )/a, is called

normalized maximum of the random variabteThe parameters,, andb, are also called

shape factors of the distribution.
We are interested in the maximum values of diffefdRs listed in Table 4. Scale factoi, (

G, (4)

andb,) and extreme indeX are determined using the maximum likelihood methadth a
confidence interval of 99%. Figure 4 shows a comsparbetween the determined distributions
and the samples for the Crossland FIP. The idedtiGEV density function and distribution
function showed a good correlation with the prolighiensity and the cumulative probability
determined from the extreme values of FIPs database
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Figure 4. Probability density and cumulative pradligldetermined using the maximum
likelihood method from the extreme values of CrasdlFIP for tensile loading.

RESULTSAND DISCUSSIONS

Figure 5 represents the mesoscopic thresholds @meaind also the probabilities of 0.1 and 0.9
quantiles) for each loading condition. These factare normalized by the macroscopic
threshold to analyze the effect of microstructumdability. Referring to figure 5, for all studied

loading conditions and studied FIPs, the normalimesgoscopic thresholds were always larger



than 1. The adaptation of different studied criteat the mesoscopic length scale requires
increasing this threshold to account for the mitcragure variability at this length scale.

On the other hand, the mesoscopic thresholds, etefas the medians of the extreme value
distribution of the studied FIPs depend on the ilmadase. This gap depends on the studied
FIP: it is low in the case of the Crossland and @o&tan FIPs (Figure 5-(a) and (c)) and
important in the case of the Matake FIP (Figureb-(For this last FIP, the change in
mesoscopic thresholds was observed especiallyzéobibxial loading with a phase shift of 90°.
This difference can be justified by consideringtttiee macroscopic loading levels applied to
the polycrystalline aggregate were determined fgreace to the Crossland criterion.
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Figure 5. Evolution of the median of the extremiugalistributions of (a) Crossland, (b)
Matake and (c) Dang Van FIPs, us function of logdianditions. The dots correspond to the
median; the two limits of the interval correspoadatprobability of 0.10 and 0.90.

Finally, the mesoscopic threshold, common to adlog cases was determined as the average
of the thresholds associated to each loading dondit This mesoscopic average threshold is
shown in Figure 5 by the dashed horizontal linessimgy through all intervals bounded by the
probabilities of 0.1 and 0.9 quantiles in the cak€rossland and Van Dang FIPs. For Matake
FIP, this was also true except for the case ofikidsadings with a phase shift of 90° due to the
reasons mentioned above.

(b) Matake FIP o (c) Dang Van FIP

40 P 40

30 30

Toct,a IMP2]
Ta [MPa]
© [MPa]

20 | 20 |8

ot ] 10F

0 1I0 2IO (;0 4lO 50 0 0 1I0 2IO 3I0 4IO E;O E‘;O 7I0 80 0 0 1I0 2IO‘7 ?:0 4‘0 50
Ghyd,max [MPa] On,max [MPa] Ghyd [MPa]

Figure 6. Predictions from (a) Crossland, (b) Matakd (c) Dang Van at the macroscopic

length scale (black line) and the mesoscopic leag#he (gray dots). The extreme values of

these predictions are represented by red dotsigecriteria determined by the average of the
medians of the extreme value distributions areasgmted by the red line.

The mesoscopic threshold of different FIPs is trerage (over the different loading conditions)
of the medians of the extreme value distributidfeseping the same value for time parameter,
the new criterion containing microstructural hetgnoeities contribution at the mesoscopic

length scale is plotted in Figure 6. When the mesjis threshold (red line) is close to the
macroscopic one (black line), the microstructureetogeneities are taken into account by the



original criterion. This is especially the caselHng Van criterion and to a lesser extent the
case of Matake criterion. For the Crossland coterthe distance between the two straight lines
is important. This comparison proves that critigdhne type approaches can capture the
microstructure heterogeneity despite simplifyinguamsptions [11].

CONCLUSIONS

In this work, we analyzed the responses of mesdscopltiaxial fatigue criteria, widely
studied in the literature (Crossland, Matake andad>dan) from polycrystalline modeling of
pure copper coupled with a statistical study ofdtigcal grains. This statistical study allows us
to introduce microstructural heterogeneities effie¢he variability of the fatigue limits.

The comparison between the mesoscopic predictibrihese criteria and the macroscopic
(original) criteria shows that they are not conaéwe at the grain scale. Indeed the

identification of macroscopic parameters of theseeria (@, and B ) does not take into

account the variability due to the microstructufde solution would be to readjust these
parameters on the most critical grain predictiaiosnf a calculation. These critical grains are
located in the tails of the aggregate responseilslisions. One of the most used methods to
statistically study these critical grains is théreme value probability. The statistical moment’s
determination of the different distributions alladves to define a new mesoscopic threshold for
the studied criteria.

These thresholds are the average of the mediahg @xtreme value distributions related to the
different loading conditions. According to the eribn, these thresholds are different or similar
to the macroscopic thresholds. For Dang Van, theoswopic threshold is close to the
macroscopic value of the fatigue indicator paramgteatio between the two thresholds is 1.1).
At the opposite, for Crossland, the ratio betweeseornand macro thresholds is greater than 1.5.
Matake criterion has a ratio of around 1.2.

Finally, except for the biaxial loading with a phashift of 90° where FIP median values are
very different from one criterion to another, thesascopic thresholds is almost the same for alll
loading conditions. These new mesoscopic threshmaidgherefore be determined by applying a
single loading case.
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