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INTRODUCTION

The fatigue life assessment under multiaxial logsliis a rather complex task. There is a large
number of criteria for such an assessment. Manyhein are formulated for a constant
amplitude loading. In the case of variable ampbtén application of fatigue assessment
criteria becomes more difficult. For many criterinere are no well-known detailed
descriptions of such an application.

Therefore a simple algorithm which allows an agilan of critical plane and integral stress-
based methods to variable proportional and nongutimmal loadings is proposed. With this
algorithm the well-known stress-based multiaxiaigiae hypotheses according to Findley [1,
2] and also the shear stress intensity hypothekis[$ 4] (both originally proposed for
estimation of the fatigue limit) are used for thealeation of spectrum loadings. These
hypotheses were applied to the finite fatigue gftterassessment of thin-walled, overlapped
laserbeam-welded aluminium joints made of the ieiify hardened aluminium alloy
AlSilMgMn T6 (EN AW 6082 T6) and of the self-haradegp alloy AIMg3.5Mn
(EN AW 5042) [5]. Additionally, the fatigue stretgtevaluation of multiaxial spectrum
loading was carried out by a modified Gough-Pollalgbrithm as it is proposed in the [IW-
recommendations for fatigue assessment of weldsSjte fatigue is a local process the used
stress components are local stresses in the titiea at the weld root which are calculated
by applying the notch stress concept with a refseradius of & = 0.05 mm [7, 8, 9].
Fatigue life calculations using the criteria SSCH),[ 11] and EESH [12] were already
performed in [5]. These two methods do not reqoomputation of stress values in arbitrary
cutting planes and hence the algorithm presentéusrpaper cannot be applied to them.
Further it is discussed if the hypotheses are Isigitto describe the fatigue behaviour with
sufficient precision and if some modifications egquired.

SPECIMENSAND TESTING

In the investigation [5] fatigue tests with tubé¢ulaserbeam-welded joints were performed
(Fig. 1). Two different materials were investigatdte self-hardening alloy AIMg3.5Mn (EN
AW 5042) and the artificially hardened alloy AlISigMn T6 (EN AW 6082 T6). Fatigue
tests with constant as well as variable amplitugdese performed for uniaxial (pure axial
loading, pure torsion) and for combined (axial+tmm$ proportional and non-proportional
loadings. For the tests with variable amplitudéSaal3-distributed loading sequence with the

load ratioR = —1, lengthLg = 5 - 10* cycles and irregularity factdr= 0.99 was used. The



experiments were carried out in a servo-hydraubxibl test rig at room temperature under
load control with a testing frequency of 20*. Failure criterion was total rupture.
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Figure 1. Specimen geometry

STRESS-BASED FATIGUE LIFE CRITERIA FOR MULTIAXIAL VARIABLE
LOADS

A general plane stress state with the three loatpomentsr,, gy, 7,,, is considered, since
crack initiation usually occurs on a free surfaldee components are time dependent
functions.

Figure 2. Position of the plane and it's normalteec

Application of stress-based fatigue life criterintégral as well as critical plane methods)
often requires a notion of the normal stress annbéitand the shearing stress amplitude in any
given plane. For a variable amplitude load sucliesican be easily computed if only planes
orthogonal to the free surface are considered orpfoportional loadings (that is the
componentsr,, g, T, are all in-phase oscillations). However the siaratis much more
difficult if arbitrary oriented planes are takertaraccount in the case of variable multiaxial
non-proportional load (“arbitrary load”). A plane space is defined by its normal direction,
which is in turn defined by two anglésy (Fig. 2). In such a plane shear stress is a vector
and there is no obvious definition of shearing sstramplitudery,, ,. Hence there is no
obvious way to apply many of the stress-based Ingsets. Application to the arbitrary loads
is often discussed in the literature but no tholowgscription, which could be used to
implement an algorithm, is known to the authorsm8dints can be found for instance in
[13].

The normal stress amplitudg,, , in a plane given by the anglés) can be computed as the
damage equivalent constant amplitude using rainftmunting and Palmgren-Miner-rule



against the axial SN-curve (in this paper Palmdviamer elementary, i.e. no knee point of the
SN-curve is assumed; the only exception is the cdatipn according to the IIW design
code). The main difficulty is to define a sheaessramplitude. For an arbitrary load the shear
stress vector follows a curve and hence does neg¢ hadesignated direction. In order to
overcome this difficulty the following is proposedn origin is fixed and the curve is
projected onto each direction in the plane (Fig.&)ch projection can be seen as a sequence
of inversion points. Hence rainflow counting cangesformed and the equivalent constant
amplitude can be computed against the torsion SMecusing Palmgren-Miner rule. Then
the maximum of the equivalent amplitude over alédiions is the shearing stress amplitude
Toy,a- Alternatively the shear stress amplitude in tle@@ can be obtained as an integral over

all possible directions (cf. [4]).

Base stress signals Projections

Figure 3. Shear stress curve in a plane and ifsgirons on different directions

Findley-Criterion

Findley introduced his fatigue criterion [1] fortarsion cyclic loading combined with in-
phase bending. It is a critical plane method. Icheplane the sum of the shear stress
amplitude and of the scaled maximum normal stressomputed. The maximum of the
normal stress is taken over a whole cycle. Finétbeyulated his criterion as follows:

f= maxg 4 (Tew,a + ko—Gl[),max): (1)
wheretgy, , is the shear stress amplitude aRg ,q, is the maximum normal stress in a
plane given by the anglésandy, k is the Findley-parameter. The critical plane is tmne,
where the maximum of the expressig), , + kogy max iS attained.
The parametek is a measure for how sensitive is a certain meteyithe normal stresses. In
[2] it is proposed to puk € [0.2,0.3] for ductile materials. The value can also be
determined from the fatigue limit values at puresien and pure axial loading [2]. For this
paper the Findley-parametris computed using uniaxial fatigue valuesNat 107, i.e.



under the knee point of both the axial and theiaar§N-curves (Figs. 5, 6). It can also be
assumed thak depends on the number of cyclés in this casek can be determined
iteratively using a numerical root finding methagtk as regula falsi.

In the literature it is described how to apply Haydcriterion to combined loads with constant
amplitudes in both proportional and non-proportiooases. An application to a variable
loading sequence is presented in the current paper.

In order to apply the Findley-method to loads vatimstant as well as variable amplitudes, the
following situation is considered: stress composemé given by

Oy = O, gy = Vo, Ty =T (2)
corresponding to a plane stress state as it ogouasnotch under combined loading. The

valuev is the Poisson’s ratio. In the case of constaniliémdes the components are given by
the cosinus oscillations:

o =ad(t) = o, + 0, COs wt, 3)

T =1(t) = 7, + T4 cOS(wt + Q). (4)
By o,, andt,, mean stresses are denotedandzr, are amplitudes ang, is the phase shift
between the two loading signalsandrt, in this paperp, = 0° (proportional case) and
¢ = 90° (non-proportional case) are considered.
The equivalent shear stress amplitugg, in a plane for the Findley-criterion can be
computed using the method presented in the predeason. A major difficulty is to define
the respective maximum normal streégg ... This can be done if it is taken into account

that for the stress ratR = —1 (i.e.o,, = 7,,, = 0) the amplitude of the normal stress is
equal to the maximum normal stregs,, = dgy max- If for a certain rainflow cycle the
stress ratio is not equall a mean stress transformation can be performed.

For variable amplitudes the modification of thenfemw counting method according to [14]
can also be used. This method assignes to eacliecbaycle of the shear stress signal in a
plane the corresponding maximum normal stress vdlhe counting result consists of pairs
of the form (shear stress cycle, maximum normalssil. Each pair is evaluated against the
reference SN-curve using the Palmgren-Miner rulthWp,, = 1.0. The Findley-criterion
evaluates proportional constant amplitude loadsemtamaging than the non-proportional
ones. The counting method [14] can result in arsatef this behaviour for variable loads.

Shear Stress Intensity Hypothesis (SIH)

SIH as it is introduced by Zenner et al. [3, 4jrs integral hypothesis, which is capable to

take mean stresses into account. Fatigue failuersdf the following condition is satisfied:
at’, + bo’, + mt2, + no,, = 0. ()

The left-hand side of the equation (5) can be praged as a square of an equivalent swéss

Valueoy, is the fatigue limit (which in reality often doest exist [15]) under fully reversed

axial loading. Values, n, t2,,, o,,, are introduced in order to deal with mean stresses

are ignored in this paper, since almost every lugadiycle has the stress ratio nRae= —1.

Parameterg, b are defined in the papers [3, 4] as follows:

1 2 1 2
a=—3(U—W) —4], b=—6—2(a—W) 6)
5 Tw 5 Tw
By 7y, the fatigue limit under fully reversed torsion dirag is denoted. With the anglésy
as shown in Fig. 2 the integral valugs, o2, are given by the expressions:
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= lfred,’a cosy dOdy, (7)
o

. 3

Opa = — J-J-agwacoswdé?dlp, (8)
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The situation discussed in this paper is slightfietent from the one in the papers [3, 4]. A
notched specimen is considered, so the stress amnisoare as defined by (2). In this setting
parametera andb have the following form:

9)

a= m[@v +2v+3)< W)2—4,

2 o
~ 5 +v)? IB mOimva ) <5> l (o)

Valuesay, andty, refer toN = 107, that is at the same number of cycles as for thdlé&y-
criterion. In order to obtain sensible values & parameters, b, the inequality

Z-v+1 \/3v2+2v+

must hold (cf. [4]). Analogous to the Flndley-crltm there is a possibility to make the
parameters dependent ¥rand so to take different slopes of the axial awdion SN-curves
into account.

Application of SIH for constant amplitudes requidesowledge of the normal stress and
torsion stress amplitudeg, q, Ty, IN @ plane with a normal vector defined by thelesig
6,v. Their computation is ommited here. Similar conapions can be found e.g. in [13].
Then the values?, andg?2, can be obtained by numerical integration.

For variable amplitudes the method described alsused.

(11)

I 'W-Recommendations
The Basis for the 1IW design code [6] is the Golrgitkard criterion [16], which corresponds
to the von Mises hypothesis when the multiaxial dgenparametdp,;, = 1.0 is used:

2 2
g, T
( a,comb > + ( a,comb ) < DMA (12)
Oqa,SN pure axial (N) Ta, SN pure torsion (N)

This criterion comprises a physically found consitien of shear and normal stress
interaction. Calculating lifetimes with this methoualist be done numerically.

The modification of this method, used for the II\Wsdyn code, is given by the alteration of
the right-hand sid®,,,, dependent on the material and on whether therigasl proportional

or not. If semi-ductile material states are to bseased, which usually show no difference in
fatigue life proportional and non-proportional loags, Dy, = 1.0 can be applied for both
cases. If assessment shall be done for ductilerimlastates, which usually show a decrease
of fatigue life under non-proportional loadings aamparison to proportional loadings, the
right-hand side must be reduced. For such casesl\Weecommendations based on the
investigations [18] suggest to use a conservataraatje parametér,, = 0.5. Thus, in this

case the allowable loads are reduced by a factg of




One difficulty of using differenD,,, values for proportional- and non-proportional lioggdis
that the uniaxial edge cases (e.g. pure axial tmpdilo not match, but this aspect has no
relevance for practical applications.

Application of this simple algorithm to multiaxiadpectrum loadings demands to first
determine scalar values for each loading compathantrepresent the whole spectrum. This is
done by using the condition that the scalar vala tb represent constant amplitude loading
that causes the same damage as the given spe&yunsing this equation, normal and shear
stress spectra are reduced to damage equivalem'sval

J k -k k
X = k1\/ 1 Zi=1ni Xa,ll. 221 j+1 azl. (13)

Dpy i=1 n;

In the latter expressiab,,, is the Palmgren-Miner damage sunthe index of the load level,
k, the slope of the SN-curve above the knee pé&inthe slope of the SN-curve under the
knee pointn; the number of load cycles with thdh load level,n the total number of
different load levelsj the index of the lowest load level above the knaet.

Modification of the calculated damage can be dopénbroducing an allowable Palmgren-
Miner sumDp,, < 1.0 into the equation. IW recommends to Bgt, = 0.5 for welded joints
and the slope of the SN-curve below the knee goint 2 k; — 2 is dependent on the slope
above the knee point (Palmgren-Miner modified). Té¢mmputations in this paper are
performed in accordance with this recommendati®hs. computation was performed against
the experimental SN-curves for 50% probability ofvéval (i.e. the same basis curves as for
the other two methods), not against ones providethe [IW design code. With the SN-
curves from the IIW design code more conservaegelts would have been obtained.

COMPARISON AND CONCLUSIONS

For both alloys and the two combined loads (prapoal, non-proportional) the
computational Gal3ner-curves are shown (Figs. 9n@jigs. 7, 8 the fatigue life evaluations
are presented for all tests (constant as well aabla amplitude loadings) carried out in [5].
The criteria of Findley and SIH both yield gooduks for the proportional case and strongly
overestimate fatigue life under non-proportionadmgs. The [IW-recommendations lead to
a conservative assessment for both alloys, howevisr required to adapt the multiaxial
damage parameté,, for a non-proportional load.
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Figure 4. Ratios prop./nprop. for Findley-criteriand SIH. Values normalized with respect to
the equivalent stress for proportional constantldauge loading. Values for variable
amplitudes apply to the loading sequence usedvissiigation [5]

Fig. 4 shows, that both Findley and SIH evaluate ribn-proportional case as slightly less
damaging than the proportional one. The relatiothefequivalent stress in proportional case



for the non-proportional loads for variable ampliés is approximately the same as for the
constant ones (cf. Fig. 4).

In order to assess fatigue life using Findley aitd &rrectly for materials which live less
under non-proportional loadings some sort of “noopprtionality” factor is required. This
factor will evaluate to what extent a certain leschon-proportional and then used to weight
the equivalent stresses. For introduction of sutdctor the ratio of the equivalent stresses in
the proportional and the non-proportional case adeypfor the constant amplitudes must be
approximately the same as for variable amplitudéss requirement is satisfied as can be
seen in Fig. 4. Also ductility of the material mb& taken into account [19], since for brittle
materials a non-proportional loading is usuallysldamaging.

As soon as the non-proportionality factor is introeld both hypotheses (SIH, Findley) can be
applied to arbitrary loads in a sensible way.
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