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ABSTRACT. Different crack orientations are observed at different locations in the 
crack network discovered in the old Residual Heat Removal (RHR) system of nuclear 
power plants. The crack orientations are thought to be possibly related to the 
orientations of the critical plane on which the accumulated fatigue damage is maximum 
during the crack initiation period. In this paper, the effects of biaxial mean stress on 
critical plane orientations under biaxial fatigue loading conditions are investigated 
based on a combined analytical and computational approach. The analytical solutions 
of critical plane orientations using Matake’s and Fatemi-Socie’s crack initiation 
criteria are first derived and validated by the computational results obtained from a 
specialised C/C++ program and Code_Aster® software. The analytical solutions are 
then adopted to study the effects of biaxial mean stress on critical plane orientations. 
According to the analytical solutions, the critical plane orientations appear to strongly 
depend on the dominating stress under biaxial fatigue loading and tend to a constant 
orientation when the mean stress is sufficiently large. Finally, the analytical critical 
plane orientations are correlated with the observed crack directions in the RHR system. 
 
 
INTRODUCTION 
 
Thermal fatigue crazing was observed in the mixing zone of the T-section of the pipes 
in the old RHR system subjected to thermal fluctuations caused by the turbulent mixture 
of hot and cold flows [1]. The thermal crazing is characterized by a network of edge 
cracks that are shallow, dense, uni- and multidirectional as shown in Fig. 1 [2]. Even 
though the design of RHR has been modified for the last decade, a better understanding 
of the thermal fatigue crazing will contribute to enhance the system integrity and 
durability. 

The total fatigue life consists of crack initiation life and crack propagation life. For 
the estimation of the crack initiation life, a common approach is to compute the fatigue 
damage at all points of structures/components following all possible plane orientations 



(at each point) to find the maximum damage [3]. The obtained location and associated 
plane giving the maximum damage are defined as the critical location and the critical 
plane, respectively. It is noted that the cracks are likely to be initiated at the critical 
location with the cracking plane following the critical plane.  

The main thermo-mechanical problem under consideration is a thin pipe subjected to 
high cycle thermal fatigue loading. The radial stress in a thin pipe is generally negligible 
as compared to axial and circumferential stresses [4]. In this case, the stress state in a 
pipe under thermal loading can be considered as biaxial. As shown in Fig. 1, different 
crack orientations are observed at different locations, especially at locations of tensile 
residual stresses. These different observed cracking directions are possibly due to 
different orientations of the critical planes during crack initiation period. These different 
critical plane orientations are in turn thought to be correlated with the different values of 
the residual stress in different locations and directions [1, 2].  

Note that residual stress contributes significantly to the mean stress under fatigue 
loadings. Also, an exact determination of residual stresses for components in service is 
quite challenging. Therefore, the effects of biaxial mean stress on the critical plane 
orientations under biaxial fatigue loading conditions are investigated using a combined 
analytical and computational approach in this paper.  
 

     
 

Figure 1. Thermal crazing Figure 2. (a) Loading conditions on an elementary cube 
in the old RHR system [2].            (b) Triangular loading histories. 
 
 
ANALYTICAL AND COMPUTATIONAL MODELS 
 
Loading conditions and materials 
In this study, an elementary cube subjected to a biaxial proportional loading that 
represents applied thermal load at a particular material point (or at the critical location) 
in a tubular specimen is used in the computations as shown in Fig. 2(a). Three important 
parameters, the ratio of stress amplitudes, denoted as λ , and the ratios of mean stresses 
in the two directions, denoted as xα  and yα  respectively, are defined in Eq. 1. Here, 

,a xσ , ,m xσ , ,a yσ  and ,m yσ  represent the amplitudes and mean values of stresses in x  and 

y  directions respectively. The loading histories are shown in Fig. 2(b). 
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An isotropic elastic material with the Young’s modulus 193000MPaE =  and 

Poisson’s ratio 0.3ν =  is used in this study. 
 
Crack initiation criteria 
 
Matake’s criterion 
An equivalent stress as defined in Eq. 2 is introduced to transform the original Matake’s 
criterion into a damage accumulation model [6]. 
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where a  is a material constant. n
r

 represents the normal vector of the plane as shown in 

Fig. 3(a) and could be represented as ( ) ( ), , cos ,cos ,cosx y z x y zn n n n ϕ ϕ ϕ= =
r

, where xϕ , 

yϕ  and zϕ  represent angles between the normal vector and axes. Note that xn , yn  and 

zn  represent the corresponding direction cosines.  Also, it is noted that 2 2 2 1x y zn n n+ + = . 

 

           
 

Figure 3. (a) A plane represented by n
r

                 Figure 4. MCC Method [6] 
(b) Projection of stress on this plane 

 
In Eq. 2, τ∆  represents the amplitude of shear stress and maxN  represents the 

maximum normal stress on the plane represented by n
r

 (Fig. 3(b)) during the loading 
cycle. For periodic loads, the minimum circumscribed circle (MCC) method is used to 
compute 2τ∆ , which is computed as the radius of the circle R  as shown in Fig. 4 [6]. 
This equivalent stress will then be used to estimate the number of cycles at rupture by 
using a corresponding fatigue life curve. Maximum damage is therefore reached on a 
plane of maximum eqσ .   



Fatemi-Socie’s criterion 
An equivalent strain as defined in Eq. 3 is introduced to transform the original Fatemi-
Socie’s criterion into a damage accumulation model [3]. 
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where k  is a material constant and yS  represents the yield stress. In this study, 

208MPayS =  is adopted. γ∆  represents the amplitude of shear strain during the 

loading history. The minimum circumscribed circle method for strain histories is also 
used to compute γ∆ /2 for periododic loads [6].  
 
 
ANALYTICAL SOLUTIONS OF CRITICAL PLANE ORIENTATIONS  
 

In Fig. 3(b), F
ur

 represents the stress vector applied on an arbitrary plane of normal 

vector n
r

. Note that F n= ⋅σ
ur r

 and the normal stress ( )n F n nσ = ⋅
uur ur r r

 ( σ  represents the 

stress tensor). The shear stress is projected on this plane as nFτ σ= −
r ur uur

. From Eqs. 1, 2 

and 2 2 2 1x y zn n n+ + = , the equivalent stress for Matake’s criterion could be written as 

 

( ) ( ) ( ){ }22 2 2 2 2 2 2
,( , ) max 0, 1 1eq x y a x x y x y x x y yn n n n n n a n nσ σ λ λ α α λ  = + − + + + + +   

  (4) 

 
The critical plane orientation is obtained by finding the maximum value of the two-

variable function ( , )eq x yn nσ . This leads to the solving of the following equation 
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Similar derivation process for obtaining the analytical solution using Fatemi-Socie’s 

criterion is not repeated here. The analytical solutions of xϕ , yϕ  and zϕ  for the critical 

plane orientations are summarized in Table 1 as functions of ( )j iC α  with ,j M F=  

associated with Matake’s and Fatemi-Socie’s criteria, respectively. The expressions of 

( )M iC α  and ( )F iC α  are defined in Eqs. 6 and 7, respectively. In these equations, 

,i x y=  represents the directions. 
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A representative value of , 200MPaa xσ = , which represents the magnitude of stress 

variation computed for the RHR system [5], is fixed in this study. A complete 
parametric study requires to vary the three parameters λ , xα  and yα .  For the 

convenience of discussion, only special cases of (x yα α= , λ  varies) and ( 1λ = , xα  

and yα  vary) are presented in this paper. 

 
Table 1. Analytical solutions of critical plane orientations 

 

    Case   Loading Condition    xϕ  yϕ  zϕ  

   (a) 0λ =  arccos ( )j xC α  2 2 2cos cos 1 ( )y z j xCϕ ϕ α+ = −  

   (b) 0 1λ< <  x yα α=     arccos ( )j xC α  90°  2arccos 1 ( )j xC α−  

   (c)    1λ >  x yα α=  90°     arccos ( )j yC α  2arccos 1 ( )j yC α−  

   (d) x yα α>   arccos ( )j xC α  90°  2arccos 1 ( )j xC α−  

   (e) x yα α=  2 2 2cos cos ( )x y j xCϕ ϕ α+ =  2arccos 1 ( )j xC α−  

   (f) 

   1λ =  

x yα α<  90°     arccos ( )j yC α  2arccos 1 ( )j yC α−  

 
As listed in Table 1, critical plane orientations are determined by the dominating 

stress with either the larger mean stress (same amplitude) or larger amplitude (same 
mean stress ratio). When stresses in the two directions are identical (case (e) in Table 1), 
many possible critical planes exist. 

The analytical critical plane orientations are sketched in red as shown in Fig. 5. It is 
noted that for 0λ =  (uniaxial loading), xϕ  becomes 45°  when max 0N ≤ . In this case, 

the plane of maximum damage is also the plane of maximum shear stress. In more 



general cases, xϕ  is different from 45°  due to the influence of the mean stress. For 

cases (b) and (d), the critical plane is parallel to the Y  axis. For cases (c) and (f), the 
critical plane is parallel to the X  axis. For the special case (e) when =1λ  and =x yα α , 

any combination of angles satisfying the condition 2 2 2cos cos ( )x y j xCϕ ϕ α+ =  is a 

possible sollution. 
 

 
 

Figure 5. Visualizations of analytical solutions listed in Table 1 
 
 

EFFECTS OF MEAN STRESS ON CRTICAL PLANE ORIENTATION S 
 
Computational results using a specialized C/C++ program and Code_Aster® software 
are first used to validate the analytical solutions as shown in Fig. 6 for a representative 
case (b) using Matake’s criterion. Similar figure for Fatemi-Socie’s criterion will be 
reported elsewhere. A good agreement between analytical and computational results 
confirms the analytical solutions and the robustness of Code_Aster® development. 

 

 
 

Figure 6. Critical plane orientation using Matake’s criterion for case (b). 



When the mean stress ratio 1xα ≤ − , the maximum normal stress max 0N ≤ . In this 

case, the plane of maximum damage is also the plane of maximum shear stress 
( 45xϕ = ° ) based on Eqs. 2 and 3. When the mean stress ratio xα  increases and tends to 

sufficiently large, it could be induced from Eq. 6 that xϕ  decreases and tends to 0 for 

Matake’s criterion. Similarly, xϕ  decreases and tends to 30°  for Fatemi-Socie’s 

criterion from Eq. 7. The ranges of xϕ  for both criteria are shown in Fig. 7.  

 

 
 

Figure 7. Ranges of the critical angle xϕ  for case (b). 

 
 
CORRELATION WITH OBSERVED CRACK DIRECTIONS AND 
DISCUSSIONS 
 
The crack network in the old RHR system and the simulated residual stresses are shown 
in Fig. 8 [1]. Note that for a free-end thin pipe, the values of axial and circumferential 
stresses due to thermal expansion are nearly equal [4].  So 1λ =  is taken for the stresses 
induced by thermal loadings in the pipes of the old RHR system. 

For the area near the weld tips, the cracks are mainly in the axial direction as shown 
in Fig. 8(a). It is observed from Fig. 8(b) that the axial residual stress axi

resσ  is generally 

smaller than the circumferential residual stress cir
resσ  near the weld. That leads to 

x yα α< .  The analytical solution listed in Table 1 for case (f) predicts that the critical 

plane is parallel to the axial direction ( 90xϕ = ° ). Far away from the weld, a 

multidirectional crack network is observed. As shown in Fig. 8(b), axi
resσ  could be larger, 

equal or smaller than cir
resσ  for the areas far away from the weld. The analytical solutions 

listed in Table 1 for cases (d), (e) and (f) predict that the critical plane could orient in 
different directions as functions of residual stresses. The prediction of critical plane 
orientation is therefore qualitatively consistent with the observed directions of edge 
cracks. The critical plane orientations may be therefore used to partially explain the 
cracking directions of thermal fatigue crazing. 



Note that the crack propagation life depends strongly on the initial crack location and 
plane. As discussed earlier, it is likely that the crack is initiated at the critical location 
where the damage reaches maximum and the cracking plane could follow the critical 
plane orientation associated with this critical location as shown in Fig. 9. The analytical 
solutions of the critical plane orientations reported in this paper can be also used as a 
reference to justify the choice of the initial crack plane in the crack propagation analysis 
with the presence of residual stresses. 
 

        
 

Figure 8. (a) Crack network and (b)  Figure 9. Initial crack plane for   
simulated residual stresses in a RHR[1].   crack propagation models. 

 
 
CONCLUSIONS 
 
In this paper, the effects of biaxial mean stress on critical plane orientations under 
biaxial fatigue loading conditions are investigated based on a combined analytical and 
computational approach. According to the analytical and computational solutions, the 
critical plane orientations appear to strongly depend on the dominating stress under 
biaxial fatigue loading, and tend to a constant orientation when the mean stress is 
sufficiently large. Finally, the analytical critical plane orientations are correlated with 
the observed crack directions in the old RHR system. 
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