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ABSTRACT. In the present paper, a new computationally-efficient frequency domain 
formulation of the critical plane-based Carpinteri-Spagnoli (C-S) criterion is proposed 
to evaluate the fatigue lives of smooth metallic structures subjected to multiaxial random 
loading.  The critical plane orientation is here proposed to depend on the Power 
Spectral Density (PSD) matrix of the stress tensor.  Then, the PSD function of an 
equivalent normal stress is defined by considering a linear combination of the PSD 
functions of the normal stress and the projected shear stress along the direction of 
maximum variance, with such stresses acting on the critical plane.  The equivalent PSD 
function obtained allows us to apply the Tovo-Benasciutti method in order to determine 
the fatigue life of the structure being examined.  The frequency domain formulation of 
the C-S criterion is applied to some relevant random fatigue tests related to smooth 
specimens under non-proportional bending and torsion random loading. 
 
 
INTRODUCTION  
 
Engineering structures prone to fatigue failure are often exposed to cyclic loading which 
are characterized by randomly varying amplitudes.  The assessment of structural 
integrity, fatigue strength and reliability under random loading is a critical issue in the 
design of such structures.  However, despite the numerous research papers in the field, a 
correct quantification of the relationship between fatigue damage and load fluctuation 
features is still lacking.  The problem is even more complex in the case of multiaxial 
loading. 

In general, when dealing with random loading having specific statistical 
characteristics, a large effort has been spent in many research works  to correlate fatigue 
damage with power spectral density characteristics of stress components.  This approach 
in the frequency domain of loads represents an alternative approach (computationally 
appealing) to the classical one based on some cycle-counting methods in the time 
domain. 

In the present paper, an efficient frequency domain formulation of the Carpinteri-
Spagnoli (C-S) criterion is proposed to evaluate the fatigue lives of smooth metallic 
structures subjected to multiaxial random loading. 



The critical plane orientation, originally correlated to weighted mean directions of the 
principal stresses [1-4], is here assumed to be dependent on the Power Spectral Density 
(PSD) matrix of the stress vector [5].  Then, the criterion presented in Refs [6, 7] for 
random loading is modified to evaluate the PSD function of an equivalent normal stress 
[8].  Accordingly, the shear stress acting on the critical plane is projected along the 
direction that maximises the variance of such a stress (note that the projected shear stress 
obtained is time-varying in modulus, but its direction does not change with time), and 
the PSD function of the equivalent stress is defined by a linear combination of the PSD 
functions of the normal stress and the projected shear stress, both acting on the critical 
plane.  The equivalent PSD function obtained allows us to apply the Tovo-Benasciutti 
method [9] in order to determine the fatigue life of the structural component being 
examined. 

The frequency domain formulation of the C-S criterion is applied to some relevant 
random fatigue experimental results available in the literature [10], related to smooth 
specimens under non-proportional bending and torsion random loading. 
 
 
CRITICAL PLANE ORIENTATION 
 
Let us consider a point in the structural component exposed to a general time-varying 
stress state.  The stress tensor, defined with respect to the fixed frame PXYZ in Fig. 1, is 
described by the time-varying vector { } { }Tyzxzxyzyx

T ,,,,σ,σσ,s,s,s,s,sst τττ== 654321)(s . 
Now assume that the random features of the stress tensor can be described by a six-

dimensional stationary Gaussian stochastic process with zero mean values.  Further let 
us assume that we know the matrix of PSD functions or, alternatively, that approximate 
discrete spectra are obtained from the Fast Fourier Transform (FFT) of stress time 
histories.  The PSD matrix is expressed as follows: 
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Figure 1. (a) Fixed frame PXYZ with rotated frame ZYXP ′′′ ; (b) averaged principal 
stress frame P 3̂2̂1̂ ; (c) frame Puvw attached to the critical plane. 
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where the coefficients of the matrix are given by 
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and the auto/cross-correlation function jiR ,  is given by 
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with  T = observation period. 
If one considers a rotated coordinate system P 'Z'Y'X , e.g. defined by the three 

rotation Euler angles ψθφ ,,  (representing three sequential counterclockwise rotations 
about the Z-, N- and 'Z -axis, respectively, where N is the so-called line of nodes, Fig. 1), 
the PSD matrix can be easily computed from the following relationship since the stress 
components in the rotated frame are linear combinations of the stress components in the 
original frame: 

TCSCS xyzzyx )()( ωω =′′′     (4) 
where ),,( ψθφCC =  is the rotation matrix, and the coefficients of the zyxS ′′′  matrix are 
indicated as )(' , ωjiS , with 6,1j,i K= , in the following. 

According to the concept adopted in the original version of the C-S criterion [4] (see 
also Ref. [11] for a review of the criterion), the critical plane is linked to averaged 
principal stress directions.  In the case of random loading, such directions are here 
proposed to be computed as follows.  For given values of the angles θφ, , the PSD 
function 3,3, SS zz ′=′′  of the normal stress related to the general direction 'Z  can be 
computed through Eq. 4.  Then, the number of up-crossing of level zero (zero-mean 
stresses are considered) is determined according to the Rice’s formula [12]: 
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where 0λ  and 2λ  are the spectral moments of order 0 (variance) and 2, respectively, of 
the PSD function: 
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The number of loading cycles over the observation period is hence: 
TN += 01 ν      (7) 

and, according to Davenport [13], the expected value of the extreme of the Gaussian 
process z′σ  (over the observation period T )  is given by: 
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By varying the angles θφ,  ( πθπφ ≤≤≤≤ 0,20 ) with the aim of searching the 
direction Z’ experiencing in a statistical sense the maximum normal stress, the maximum 
of Eq. 8 is determined, and such a direction is regarded as the averaged principal 
direction 1̂  (hence defined by the angles φ̂  and θ̂ ). 

The angle ψ , representing a rotation about the axis 1̂ , is made to vary with the aim of 
determining the direction (on the plane with normal 1̂ ) where the corresponding shear 
stress component (which can also be regarded as the resolved shear stress along a 
direction) attains the maximum variance.  This procedure is performed through Eq. 4 
(where ),ˆ,ˆ( ψθφC  is a function of the angle ψ  only), by maximazing the variance of the 

process zy ′′τ , namely by maximizing ∫
+∞

∞−

′ ωωφ dS )(6,6  where zyzySS ′′′′=′ ,6,6 .  The obtained 

direction Y ′  is regarded as the averaged principal direction 3̂  (hence defined by the 
angles φ̂ , θ̂  and ψ̂ ) describing the plane 31ˆˆ  of averaged maximum shear.  Therefore, 
the direction X ′  is regarded as the averaged principal direction 2̂ . 

The normal to the critical plane is defined by the off-angle δ  (clockwise rotation), 
function of the ratio between fully reversed shear and normal stress fatigue limits [4], 
about the axis 2̂ : 
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EQUIVALENT PSD FUNCTION 
 
The frame Puvw, attached to the critical plane (u and v belong to the critical plane, and 
w is the normal to the critical plane), is obtained by performing five successive rotations 
of the angles φ̂ , θ̂  and ψ̂  (see the Section entitled Critical plane orientation), δ  (see 
Eq. 9) and γ  (where γ  represents a counterclockwise rotation about w-axis, so that the 
v-axis defines the direction of maximum variance, i.e. the direction where the variance 



of the process vwτ , i.e. ∫
+∞

∞−

ωω dS vwvw )(, , is maximum).  The PSD matrix )(ωuvwS  related 

to the coordinate system Puvw can be worked out through Eq. 4 ( T
xyzuvw CCSS = ), where 

now the rotation matrix C  is a function of five angles:  
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where )ˆ,ˆ,ˆ(ˆ ψθφCC =  is the rotation matrix related to the ‘principal’ Euler angles 
( ψθφ ˆ,ˆ,ˆ ).  Further:  γγ cos=c ,  γγ sin=s ,  δδ cos=c   and  δδ sin=s . 

After the above sequence of rotations, we have the PSD functions wwS ,  and vwvwS ,  
related to the processes wσ  and vwτ , respectively.  In order to reduce the multiaxial 
stress state to an equivalent unixial stress state, an equivalent PSD function is proposed 
to be determined through the following linear combination: 
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FATIGUE DAMAGE ACCUMULATION 
 
Having performed the above reduction of the multiaxial random stress state to an 
equivalent unixial one, the frequency approach proposed by Tovo and Benasciutti [9] 
can be applied to the PSD function eqS .  The details are reported in Ref. [9] whereas 
only the main equations are recalled hereafter. 

The spectral moments are: 
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Then the frequency +
0ν  of up-crossings can be determined by applying Eq. 5, and the 

frequency of peaks can be obtained from: 
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Further, the following spectral band-width parameters can be worked out: 
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According to the so-called narrow band approximation of Wirshing-Light [14], being 
k and C the parameters of the normal stress S-N curve CNS k = , the unit fatigue 
damage is given by [9]: 
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where Γ  is the gamma function ( ( ) ∫
∞ −−=Γ
0

1 dtetz tz ).  Note that such a relationship is 

approximate for general processes, but it is exact in the case of narrow band signals. 
Then, the unit fatigue damage according to the range-mean counting [15] is 

approximately given by: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +Γ= −

2
12 20

1 kCD
k

pRC αλν    (16) 

Finally, according to Ref. [9], a linear combination of the fatigue damage computed 
according to the above two approximations is proposed to estimate the damage of the 
rainflow method: 

( ) RCNBRFC DbbDD −+= 1     (17) 

where ( ) ( )2
2

2
2

2
75.0 1 ααα −−=b .  In a stationary process, the fatigue damage in Eq. 17 is 

constant and, considering a critical damage equal to unity, the calculated fatigue life is 
RFCcal DT 1= . 

 
 
APPLICATION TO EXPERIMENTAL RESULTS 
 

Experimental tests on smooth specimens made of 18G2A steel [10] are now 
examined.  The specimens are submitted to non-proportional random bending ( xσσ = ) 
and torsion ( xyττ = ) with zero mean stresses.  The random loadings have a dominant 
frequency of 28.8 Hz for bending and 30 Hz for torsion.  The loading histories are 
independent; further, they are sums of four harmonic components with different 
amplitudes (following a Gaussian probability distribution) and phases.  The power 
spectral density function is characterized by four frequency peaks.  The loading histories 
have a duration of 820 s and a sampling frequency of 250 Hz. 

In such experimental tests, 13 combinations of normal and shear stress loading 
histories, characterized by different values of the ratio maxmax στλσ = , are considered. 

The mechanical properties of the tested steel, reported in Ref. [10] unless otherwise 
specified, are: Young modulus E = 210 GPa, Poisson ratio ν = 0.3, yield stress yf  = 357 
MPa, ultimate tensile strength uσ  = 535 MPa, fully reversed bending fatigue limit 

1,−afσ  = 270 MPa, fully reversed torsion fatigue limit 1,−afτ  = 170 MPa (see Ref.[16]), 



inverse slope k = 7.2 (estimated) and coefficient C = 7.61x1023 (calculated) of S-N curve 
for fully reversed bending, reference number 0N  = 2.375x106 of loading cycles 
corresponding to fatigue limit 1,−afσ . 

The thirteen loading combinations are processed by means of the proposed criterion  
based on a frequency domain approach (accordingly, the criterion takes into account the 
loading conditions through the discrete spectra obtained from the FFT of the recorded 
experimental stress time histories).  The comparison, presented in Fig. 2 in terms of 
experimental against calculated fatigue lives ( calTT −exp ), seems to be quite satisfactory, 
with 89% of the results within the 3x band  and  with 70% within the 2x band. 
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Figure 2. Comparison between calculated and experimental fatigue lives. 
 
 
CONCLUSIONS 
 

A new computationally-efficient frequency domain formulation of the critical plane-
based Carpinteri-Spagnoli (C-S) criterion is proposed in order to evaluate the fatigue life 
of a smooth metallic structure subjected to multiaxial random loading.  The main novel 
characteristic of such a proposal is the determination of the critical plane orientation 
through the Power Spectral Density (PSD) matrix of the stress tensor.  Then, an 
equivalent PSD function is suitably defined and processed through the Tovo-Benasciutti 



method to determine the fatigue life of the structural component being examined.  The 
comparison with some experimental tests is satisfactory, although more complex loading 
conditions (characterized in particularly by broad-band spectra) need to be processed in 
order to fully assess the estimation capability of the proposed criterion. 
 
 
ACKNOWLEDGMENTS 
 
The authors gratefully acknowledge the financial support of the Italian Ministry of 
Education, University and Research (MIUR) under the project PRIN 2009 No. 
2009Z55NWC_003. 
 
 
REFERENCES 
 
1. Macha E. (1989) Mat. Wiss. U. Werkstofftech. 20, 132-136;  153-163. 
2. Carpinteri A., Macha E., Brighenti R., Spagnoli A. (1999) Int J Fatigue 21, 83-88; 

89-96. 
3. Carpinteri A., Brighenti R., Spagnoli A. (2000) Fatigue Fract Engng Mater Struct 

23, 355-364. 
4. Carpinteri A., Spagnoli A. (2001)  Int J Fatigue 23, 135-145. 
5. Pitoiset X., Rychlik I., Preumont A. (2001) Fatigue Fract Engng Mater Struct 24, 

715-727. 
6. Carpinteri A., Spagnoli A., Vantadori S. (2003) Fatigue Fract Engng Mater Struct 

26, 515-522. 
7. Carpinteri A., Spagnoli A., Vantadori S. (2009) Proc. of the 2nd Internat. Conf. on 

Material and Component Performance under Variable Amplitude Loading, Vol. 1, 
pp. 475-484, Darmstadt, Germany. 

8. Pitoiset X., Preumont A. (2000) Int J Fatigue 22, 541-550. 
9. Benasciutti D., Tovo R. (2006) Prob Eng Mech 21, 287-299. 
10. Marciniak Z., Rozumek D., Macha E. (2008) Int J Fatigue 30, 800-813. 
11. Carpinteri A., Spagnoli A., Vantadori S., Bagni C. (2013) Fatigue Fract Engng 

Mater Struct (in press). 
12. Lutes L.D., Sarkani S.S. (1997) Stochastic analysis of structural and mechanical 

vibrations. Prentice-Hall. 
13. Davenport A.G. (1964) In: Proc. Institution of Civil Engineers. 
14. Wirsching P.H., Light C.L. (1980) J Struct Division ASCE 106, 1593–1607. 
15. Madsen H.O., Krenk S., Lind N.C. (1986) Methods of structural safety. Prentice-

Hall. 
16. Karolczuk A.; Macha E. (2005) Fatigue Fract Engng Mater Struct 28, 99-106. 


