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ABSTRACT. This paper presents a creep constitutive reasonably reflecting the 
influence of stress triaxiality on creep deformation and a creep cavity growth model 
appropriately describing the effect of stress biaxiality on the multi-axial creep ductility. 
Three-dimensional finite element analyses are performed to simulate the creep growth 
behaviors of a single crack in thumbnail crack specimens and multiple cracks in a 
tensioned plate at high temperature, respectively. Numerical results show the proposed 
creep-damage model is proved to be of excellent predictive capability. 
 
 
INTRODUCTION 
 
It is no exaggeration to say that crack-like defects inevitably exist in most components 
and the assessment of them is very crucial since it indicates whether they are safe 
enough or not. Owing to a crack revealed on an engine blade, US military recently 
grounded all F-35 fighter jets before the investigation being complete [1]. Intuitively, 
we might expect a robust and time-saving assessment approach such as numerical 
simulation to be adopted. 

Undoubtedly, an appropriate creep-damage model is necessary for the reliable 
simulation of crack growth with creep regime. Although significant progress has been 
made in the continuum damage mechanics (CDM) model to simulate creep failure [2-8], 
some obstacles need to be overcome. One of the major difficulties is how to simplify the 
increasingly complicated model without the loss of reality and accuracy. 

In this work, a creep constitutive combined with a modified creep cavity growth 



model under multi-axial stresses is proposed. Furthermore, its applicability in creep 
crack growth prediction is demonstrated. 
 
CREEP-DAMAGE MODEL 
 
The first CDM model, which was envisaged in Kachanov and Rabotnov’s work [2, 3] in 
1960s, was reported to give significantly mesh-dependent results [4]. This led Liu and 
Murakami to suggest an alternative one in which the ill-natured stress sensitivity was 
avoided. However, the influence of stress triaxiality has not been reasonably considered 
and the over-complicated model needs to be simplified. 

Using a modified creep ductility exhaustion approach, the authors [9] presented a 
creep-damage model, which does not require the calibration of parameters in the 
damage calculation, to simulate creep failure. The proposed model is as follows:  
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where A and n are material constants. c
ij , ijs , e  and 1   are the creep strain tensor, 

deviatoric stress tensor, equivalent stress and maximum principle stress, respectively. 

 , c  and *
f  denote the damage variable, creep strain rate and multi-axial creep 

failure strain, respectively.   is a function of n and  , of which the expression is 

given in Refs. [9]. 
Fig. 1 shows the relation between creep rate enhancement and stress triaxiality for 
=0.5391 . The enhancement factor, e, is defined as the ratio of creep strain rate with 

damage to that without damage. It is clear from Fig. 1 that when stress triaxiality is 
more than one, the enhancement factors predicted by Liu-Murakami model appear not 
to match the cell model calculations of Sester et al. [10], while the proposed model can 
better reflect the effect of stress state on creep deformation. 
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cracks coalesce, dented portions at the contact point are formed by the newly combined 
crack, with the crack shape deviating from the semi-ellipse pronouncedly. Subsequently, 
the concave positions of crack front show a relatively high growth rate compared with 
other sections. Ultimately, the crack shape saturates with the re-entrant section being 
smooth in a short time. 
 
 
CONCLUSIONS 
 
Conclusions from this work can be listed below: 

(1) The proposed multi-axial creep constitutive can better reflect the effect of stress 
triaxiality on creep deformation than the widely- used Liu-Murakami model.  

(2) The effect of stress biaxiality on the multi-axial creep ductility can be 
appropriately predicted by the modified creep cavity growth model. 

(3) Both of the crack fronts and propagation times of thumbnail crack specimens 
predicted by using the proposed creep-damage model are in excellent agreement with 
the experimental results. 

(4) The creep growth and coalescence of multiple surface cracks can also be 
reasonably described in detail by using the proposed model. 
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