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ABSTRACT. A simple and clear method of evaluating stress and strain ranges under 
non-proportional multiaxial loading where principal directions of stress and strain are 
changed during a cycle is needed for assessing multiaxial fatigue. This paper presents a 
simple method of determining the principal stress and strain ranges and the severity of 
non-proportional loading with defining the rotation angles of the maximum principal 
stress and strain in a three dimensional stress and strain space. This study also 
discusses properties of multiaxial low cycle fatigue lives for various materials fatigued 
under non-proportional loadings and shows an applicability of a parameter proposed 
by author for multiaxial low cycle fatigue life evaluation. 
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INTRODUCTION 
 
Most design codes use equivalent values to express the intensity of multiaxial stress or 
strain, like von Mises or Tresca equivalent stress and strain, and fatigue lives are usually 
estimated using equivalent values under multiaxial stress and strain states. The 
equivalent value means a scalar parameter that expresses intensity of a physical 
phenomenon in multiaxial stress states and should be reduced to be a uniaxial value in 
uniaxial stress state. Most widely used equivalent parameters are the von Mises and the 
Tresca equivalent stresses and strains. The von Mises equivalent stress physically 
expresses the intensity of shear strain energy and the Tresca equivalent stress that of the 
maximum shear stress. For example, ASME Section III, Division 1 NH [1] uses the von 
Mises equivalent strain and ASME Section VIII, Division 3 [2] the maximum shear 
stress. 

However, the von Mises equivalent stress and strain have no negative values so that 
they have a difficulty of expressing stress and strain ranges. The Tresca equivalent 
stress and strain have negative values but they also have a difficulty to put a sign to the 
shear stress and strain under multiaxial loading. Especially, in non-proportional loading 
where the principal stress and strain change their directions, giving a sign to them 



becomes more difficult. A simple and clear method of calculating stress and strain 
ranges is needed for describing multiaxial fatigue. 

Multiaxial low cycle fatigue (LCF) lives are reduced under strain controlled non-
proportional loading accompanied by additional cyclic hardening compared with 
proportional loading [3-8] and an appropriate design method of evaluating the non-
proportional fatigue life is needed for a reliable design and maintenance of structural 
components. Classical models particularly applicable in multiaxial fatigue life 
evaluation under proportional loadings lead to overestimate the lives under non-
proportional loadings. For life evaluation under non-proportional loading, commonly 
proposed models are critical plane approaches that consider specific plane applied the 
critical damage, such as a Simith-Watoson-Topper [11] and a Fatemi-Socie [12] models. 
The authors also proposed a strain parameter (Itoh-Sakane model) estimating the non-
proportional LCF lives for several materials under various strain histories [6,7,13-16]. 
This parameter is the strain based model with introducing two parameters, non-
proportional factor and material constant. The former one reflects the intensity of non-
proportional loading reducing life and the latter one is related to the material 
dependence for degree of life reduction due to non-proportional loading. 

The Simith-Watoson-Topper, the Fatemi-Socie and the Itoh-Sakane models have 
been demonstrated to be applicable to life evaluation under non-proportional loading 
using hollow cylinder specimens in a laboratory level. However, these models can be 
applicable to the life evaluation under limited non-proportional loadings such as the 
loadings in the plane stress state. Therefore, there is a limit of application of the models 
to the design of actual components where variation in principal directions of stress and 
strain vs time is changed 3-dimensionally. 

This study proposes a method of evaluating the principal stress and strain ranges and 
the mean stress and strain, and also shows a method of calculating the non-proportional 
factor which expresses the severity of non-proportional loading in 3-dimantional (3D) 
stress and strain space. This study also discusses the material constant, α, used in the 
strain parameter proposed by author for life estimation under non-proportional 
multiaxial LCF and presents a simple method to reevaluate α in relation to material 
constants obtained in a static tension test [16]. 
 
 
DEFINITION OF STRESS AND STRAIN RANGES UNDER NON-
PROPORTIONAL LOADING 
 
Definition of stress and strain 

Fig. 1 illustrates three principal vectors, Si(t), applied to a small cube in material at 
time t in xyz-coordinates (spatial coordinates), where “S” is the symbol denoting either 
stress “” or strain “”. Thus, Si(t) are the principal stress vectors for the case of stress 
and the principal strain vectors for the case of strain. The subscript, i, takes 1, 2 or 3 in 
descending order of principal stress or strain. The maximum principal vector, SI(t), is 
defined as Si(t) whose absolute value takes maximum one, i.e., SI(t)=S1(t) when S1(t) 



takes maximum magnitude among Si(t). The maximum principal value, SI(t), is defined 
as the maximum absolute value of Si(t) as, 
 

 )(,)(,)(Max)()( 321II tttttS SSSS 　　      (1) 

 
The “Max” denotes taking the larger value from the three in the bracket. The maximum 
value of SI(t) during a cycle is defined as the maximum principal value, SImax, at t= t0 as 
follows, 
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Definition of principal stress and strain directions 

Fig. 2 illustrates two angles, (t)/2 and (t), to express the rotation or direction 
change of the maximum principal vector, SI(t), in the new coordinate system of XYZ, 
where XYZ-coordinates are the material coordinates taking X-axis in the direction of 
SI(t0) with the other two axes in arbitrary directions. The two angles of (t)/2 and (t) 
are given by 
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where dots in Eqs 3 and 4 denote the inner product and eY and eZ are unit vectors in Y 
and Z directions, respectively. Si(t) are the principal vectors of stress or strain used in Eq. 
1 and the subscript i takes 1 or 3. 
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Fig. 1. Principal stress and strain 
in xyz coordinates. 

Fig. 2. Definition of principal stress and 
strain directions in XYZ coordinates. 



The rotation angle of (t)/2 expresses the angle between the SI(t0) and SI(t) directions 
and the deviation angle of (t) is the angle of SI(t) direction from the Y-axis in the X-
plane. 
 
Definitions of stress and strain in polar figure 

Fig. 3 shows the trajectory of SI(t) in 3D polar figure for a cycle where the radius is 
taken as the value of SI(t), and the angles of (t) and (t) are the angles shown in the 
figure. A new coordinate system is used in Fig. 3 with the three axes of SI

1, SI
2 and SI

3, 
where SI

1-axis directs to the direction of SI(t0). The rotation angle of (t) has double 
magnitude compared with that in the specimen shown in Fig. 2 considering the 
consistency of the angle between the polar figure and the physical plane presentation. 
The principal range, SI, is determined as the maximum projection length of SI(t) on the 
SI

1-axis. The mean value, SImean, is given as the center of the range. SI and SImean are 
equated as, 
 

  minImaxIImaxII )()(cosMaxΔ SStStSS       (5) 
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SImin is the SI(t) to maximize the value of the bracket in Eq. 5. The sign of SImin in the 
figure is set to be positive if it does not cross the SI

2-SI
3 plane and the sign negative if it 

crosses the plane. 
The advantage of the definitions of the maximum principal range and mean value 

above mentioned is that the two are determinable without human judgments for any 
loading case in 3D stress and strain space. The range and mean value are consistent 
used in simple loading cases which are discussed in the case studies in the followings. 
SI(t) can be replaced by equivalent values of stress or strains, such as the von Mises and 
the Tresca, in case of necessity from user’s requirement. 
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DEFENITION OF NON-PROPORTIONALITY 
 

The authors proposed the non-proportional strain range expressed in Eq. 7 for 
correlating LCF lives under non-proportional loading [6,7,13-16]. 
 

  INPNP 1   f        (7) 

 
In the equation, I is the principal strain range discussed previously.  is a material 
constant related to the amount of additional hardening by non-proportional loading, 
which will be mentioned more detail in sections 4.2 and 4.3. 

fNP is the non-proportional factor that expresses the severity of non-proportional 
loading in the form as, 
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where T is the time for a cycle. b is a constant for making fNP=1 in the circular loading 
on -/√3 plot and b=/2 [6,7]. 

This paper presents f’NP in Eq. 9 in 3D expression as an extended form from fNP in 
2D shown in Eq. 8. 
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where eR is a unit vector directing to SI(t), ds the infinitesimal trajectory of the loading 

Type 1 2 3 4 5 6

Loading 
path

fNP 0 0.39 0.10 0.20 0.79 0.79

f ’NP 0 0.49 0.12 0.24 0.71 0.71

Type 7 8 9 10 11 12
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fNP 0.53 1.06 - - - -

f ’NP 0.5 1 0.71 0.98 0.49 1.78
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Fig. 4. Comparing fNP and f ’NP under several loadings. 



path shown in Fig. 3. Lpath the whole loading path length during a cycle and “” denotes 
vector product. The scalars, SImax and Lpath, before the integration in Eq. (9) is set to 
make f NP unity in the circler loading in 3D polar figure. 
Fig. 4 compares the values of fNP with those of f NP for several loading paths for the case 
of strain. Small difference in the value between fNP and f NP is found because of 
different definition between them. However, f NP has the advantages applicable to 3D 
stress and strain conditions. 
 
 
MULTIAXIAL LOW CYCLE FATIGUE LIVES UNDER NON-
PROPORTIONAL LOADING 
 
This chapter shows multiaxial LCF life properties under non-proportional loadings for 
several materials and shows the applicability of the strain parameter for life estimation, 
which were studied in authors’ previous study [14] 
 
Materials and test procedure 

Test materials employed were 12 metallic materials of which crystal structures (CS) 
are face-centered cubic structure (FCC) and body-centered cubic structure (BCC) as 
listedin Table 1 with mechanical properties obtained by static tension test. The 
specimen usedwas a hollow cylinder specimen with 12 mm outer diameter, 9 mm inner 
diameter and 7 mm gauge length as shown in Fig. 5. 

Total strain controlled multiaxial LCF tests were conducted under 2 types of strain 
paths. Figs 6 (a) and (b) show the strain paths on   /3 plot and the strain waveforms 
of  and , respectively, where  and  are total axial and total shear strains. Case 1 is the 

Table 1 List of materials tested and mechanical properties. 

Test material Mechanical property in static tensile test 

Type CS 
Young’s modulus 

E  (GPa) 
Yield/Proof stress 

Y  (MPa) 
Strength 
σB  (MPa) 

SUS316 

FCC 

197 260 575 

SUS304 197 290 750 

SUS304 (923K) 150 130 480 

SUS310S 196 215 520 

OFHC (Cu) 117 182 240 

6061Al 77 253 390 

1070Al 70 112 116 

SGV410 

BCC 

216 275 470 

SUS430 200 263 480 

S25C 200 354 493 

S45C 205 445 630 

S55C 203 485 695 

Table 1  List of materials tested and mechanical properties. 



push-pull test and Case 2 the 90 sinusoidal out-of-phase loading test. The former is the 
proportional loading test and the latter the non-proportional loading test. Total axial 
strain ranges () were set to the same ranges in Case 1 and Case 2 and total axial strain 
and total shear strain ranges were the same ranges based on von Mises,  = /3, in 
Case 2. Strain rate was 0.1%/sec based on von Mises basis. 

 

 
Multiaxial LCF life and additional hardening 

To evaluate the material dependency of failure life and cyclic hardening behaviors 
under non-proportional loading, this section shows the multiaxial LCF test results for 
SUS316 and SGV410 fatigued in the push-pull and the circle tests using the hollow 
cylinder specimen (Case 1 and Case 2). 

ASME code case [1] defines a strain parameter to express the non-proportional 
fatigue damage. The strain parameter is originated from the equivalent strain range 
based on von Mises but it was modified to have a maximum value taking any times C 
and D along strain paths as shown in Eq. (10). 
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(a) Stain paths on   /3 plot (b) Axial and shear strain waveforms 
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where C and C are the axial and shear strains at time C and D and D those at time D to 
maximize the strain in the bracket. In the tests of Case 1 and Case 2, the values of 
ASME correspond with those given by total axial strain range, . 

Figs 7 (a) and (b) show failure lives (Nf) of SUS316 and SGV410 correlated by  
(=ASME). In the figure, the bold solid line was drawn based on the data of Case 1 and 
the two thin lines show a factor of 2 band. For SUS316, Nf in Case 2 is about 1/5 of that 
in Case 1. The similar trend can be seen for SGV410, too. Nf in Case 2 is about 1/5 of 
that in Case 1. Therefore, the degrees of reduction in failure life due to non-proportional 
loading between these two steels are almost equivalent. 

The overestimation of Nf in Case 2 by the life curve in Case 1 also has been reported 
and it is known that the reduction in failure life under non-proportional loading is 
related to the additional hardening due to non-proportional loading depending on 
material [5,16-19]. 
 

Figs 8 (a) and (b) show cyclic stress-strain relations for SUS316 and SGV410 
respectively obtained by a multiple step-up test under two strain paths using the hollow 
cylinder specimen. The strain paths employed were the push-pull straining (Case 1) and 
the circular straining (Case 2) where von Mises’ equivalent strain amplitude was 
increased by 0.05 % at each 10 cycles. In the figures, I and I are the maximum 
principal strain and stress ranges under non-proportional loading which can be 
calculated by ,  and , . The obtained result shows clearly that behaviors of the 
additional hardening due to non-proportional loading are different between SUS316 and 
SGV410. The degree of additional hardening of SUS316 was approximately twice than 
that of SGV410, whereas LCF life in Case 2 was decreased down to 1/5 in comparison 
with that in Case 1 for both steels as shown in Fig. 7. Therefore, the additional 
hardening and the reduction in failure life are closely related, which depends on 

Fig. 7. Relationship between Δε and Nf. 
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material resulted from the difference in the deformation behavior due to crystal 
structural dependency [16,18,19]. 

Figs 9 (a) and (b) show Nf correlated by non-proportional strain range, NP.  
employed here is the material constant evaluated from the degree of additional 
hardening. For SUS316 ( = 0.75) in Fig. 9 (a), Nf in Case 2 is almost the same as that 
in Case 1. On the other hand, Nf for SGV410 ( = 0.39) in Fig. 9 (b) is correlated 
unconservatively in Case 2. The similar trend also can be observed in other FCC and 
BCC materials which will be shown in the following section. 

Fig. 10 shows the re-plot of relationship between NP and Nf for SGV410 by using 
* as material constant for evaluating the degree of reduction in failure life. The 
correlation in this figure shows Nf in Case 2 is plotted within the factor of 2 band with 
* = 0.85. The value of * is slightly larger than that for SUS316 (*=  = 0.75). 
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In order to investigate the relationship between multiaxial LCF life and cyclic 
hardening under non-proportional loading for 12 kinds of test materials. The 
relationship between  and * is discussed based on the experimental results. The 
universal slope method equated in Eq. (11) [20] was employed to obtain the life curves 
with a small number of data in Case 1 and Case 2 for each material. The equation is 
shown by, 
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where the coefficients A and B are equated as 3.5σB/E and f

0.6 respectively, according 
to the definition of the universal slope method. Here, E, B and f are Yong’s modulus, 
tension strength and elongation. In this study, A is put to 3.5σB/E but B and * are 
determined as life curves in Case 1 and Case 2 are corresponding at same I for each 
material. 

Fig. 10. Relationship between NP and Nf for SGV410 with *=0.85. 
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Fig. 11 shows the relationship between  and * for each material. The open mark 
shows the data for FCC materials, the solid mark the data for BCC materials. The 
relationship is shown by two straight lines separately in FCC and BCC materials 
although a few data are scattered on the both sides of the band. The result in Fig. 11 
shows that reduction in failure life has close relationship with additional hardening in 
non-proportional loading, which depends on crystal structure of tested materials. The 
relationship between  and * can be expressed experimentally as, 
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In order to verify the application of life evaluation under non-proportional loading, 

the comparison of Nf in Case 2 obtained from experiment evaluated by Eq. 11 based on 
life curve in push-pull test (Case 1) is shown in Fig. 12. In Eq. 11, * was used for 
material constant. In the figure, Nf

exp is the failure life in experiment and Nf
cal the failure 

life estimated by Eq. 11. All the data are correlated within the factor of 2 band. 
Consequently, the good correlation of lives in Fig. 12 suggests that failure life under 
non-proportional loading for various materials can be estimated by NP if the intensity 
of additional hardening is obtained from experiment. 

 
A simple method for evaluation of  and life estimation 

As discussed above, multiaxial LCF life shows the large reduction in failure life 
under non-proportional loading in comparison with that under proportional loading. By 
using non-proportional strain parameter, NP in Eqs 7 and 11, multiaxial LCF lives can 
be estimated from the data in push-pull loading test. However, to obtain the value of 
material constants,  and *, multiaxial fatigue tests under non-proportional loading are 

Fig. 12. Comparison of Nf in Case 2 between calculation and experiment. 
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necessary, but it is usually difficult procedure. If  and *can be obtained without 
conducting the multiaxial fatigue test, it will be very convenient for engineers to 
estimate LCF life under non-proportional loading. This section discusses the 
reevaluation of  by focusing on the relationship between  and material constants 
obtained by the static tension test. Cyclic hardening and additional hardening behaviors 
should have close relationship with static deformation behavior, then a relationship 
between (BY)/B and  is shown in Fig. 13. Although some scatter of data is shown, 
the relationship can be equated approximately as, 
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where B is tension strength and Y yielding or 0.2% proof stress, According to Eqs 
1113, non-proportional strain range,  NP, can be rewritten as, 
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where coefficient S takes S= 1 for FCC materials and S=2 for BCC materials. 

Fig. 14 shows the comparison of Nf in Case 2 between experiment and calculation. In 
the figure, Nf

exp is the failure life in experiment and Nf
cal the failure life estimated based 

on life curve in push-pull test (Case 1 test) by using  NP in Eq. (14). Consequently, all 
the data are correlated within a factor of 3 band and most of them correlated within the 
factor of 2 band. The good correlation in Fig. 14 suggests that multiaxial LCF life under 
non-proportional can be estimated by Eq. (14) with material constants obtained by the 
static tension test. 

Fig. 13. Relationship between (BY)/B and . 
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CONCLUSIONS 
 
1. This paper showed a simple method of determining the principal stress and strain 

ranges together with the mean stress and strain under proportional and non-
proportional loading in 3D stress and strain space. It also presented the method of 
defining the rotation and deviation angles of the maximum principal stress and 
strain. 

2. The paper extend the non-proportional factor, fNP, from 2D to 3D stress and strain 
space with the consistency with the previous definition of it in the 2D space. 

3. Reduction in failure life has close relationship with additional hardening under non-
proportional loading, which depends on crystal structure of tested materials. 

4. The parameter * which relates to the degree of reduction in failure life is effective 
in life evaluation for various kinds of materials. 

5. The relationship between * and  which relates to the additional hardening due to 
non-proportional loading is equated by linear relationships separately in BCC and 
FCC materials. 

6.  is closely related with the behavior of static tension test and can be equated by 
0.8+0.1= (BY)/B. 

7. Failure life under non-proportional loading for various materials can be evaluated 
by NP if the intensity of additional hardening is obtained as equated by NP and 
 NP. 
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