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ABSTRACT. The present paper reports on the in-field procedure specifically devised to 
apply the Modified Wöhler Curve Method (MWCM) along with the Theory of Critical 
Distances (TCD) to estimate fatigue lifetime of steel and aluminium welded joints 
subjected to in-service constant (CA) and variable amplitude (VA) multiaxial fatigue 
loading. The accuracy and reliability of the MWCM was systematically checked 
through a large number of experimental results taken from the literature and generated 
by testing, under CA/VA biaxial nominal loading, welded samples having different 
geometry. Such a systematic validation exercise allowed us to prove that our method is 
successful in designing welded joints against CA/VA multiaxial fatigue. This result is 
very interesting because it suggests that our approach can be used in situations of 
practical interest by performing a fatigue assessment which fully complies with the 
recommendations of the available Standard Codes. 
 
 
INTRODUCTION 
 
Other than those approaches suggested by the available Standard Codes and 
Recommendations as being adopted in situations of practical interest to design welded 
joints against fatigue, examination of the state of the art shows that, in recent years, 
several attempts have been made in order to devise alternative design techniques taking 
full advantage of local quantities. Amongst the different approaches which have been 
proposed so far, and somehow validated through appropriate experimental results, 
certainly the Reference Radius concept [1], the N-SIF approach [2], the Strain Energy 
Density parameter [3], and the TCD [4] deserve to be mentioned explicitly. 

In this complex scenario, over the last decade we have made a systematic effort in 
order to formalise and validate a novel approach based on the combined use of the 
MWCM and the TCD to estimate finite lifetime of welded joints under CA multiaxial 
fatigue loading [5, 6]. In the present paper, such an approach is further generalised in 
order to make it suitable for performing the fatigue assessment of steel and aluminium 
welded joints subjected to in-service VA multiaxial fatigue loading. 
 



 
Figure 1. Adopted definitions to calculate the amplitude and the mean value of the stress 

components relative to the critical plane under VA loading. 
 
CRITICAL PLANE STRESS COMPONENTS AND CYCLE COUNTING 
UNDER VARIABLE AMPLITUDE MULTIAXIAL FATIGUE LOADING 
 
The MWCM is a bi-parametrical critical plane approach whose formalisation takes as a 
starting point the assumption that fatigue damage, under both VA and CA loading, 
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reaches its maximum value on that plane (i.e., the so-called critical plane) experiencing 
the maximum shear stress amplitude. 

By initially focussing attention solely on the CA problem, examination of the state of 
the art shows that different definitions [7] can successfully be adopted to calculate the 
maximum shear stress amplitude, τa. Even if such classical definitions are seen to be 
successful in calculating τa, their in-field usage becomes extremely time consuming 
when complex and long load histories are involved. To overcome the above problem, in 
recent years we have devised an alternative definition based on the maximum variance 
concept [8]. In more detail, the Maximum Variance Method (MVM) [7, 8] postulates 
that the critical plane can be defined as that plain containing the direction (passing 
through the assumed critical point) that experiences the maximum variance of the 
resolved shear stress, τMV(t) – see Figures 1a and 1b. From a practical point of view, the 
most remarkable peculiarity of the MVM is that, as soon as the variance and co-
variance terms of the stress components at the critical location are known, the 
computational time required to determine the orientation of the critical plane does not 
depend on the length of the input load history being assessed [8]. Further, thanks to the 
specific features of the MVM, such a method can be used to determine the orientation 
of the critical plane not only under CA, but also under VA multiaxial fatigue loading 
[8]. Turning back to the CA problem, if the component sketched in Figure 1a is initially 
assumed to be subjected to a system of cyclic forces resulting in a CA stress state at 
critical point O, as soon as the orientation of the critical plane is known through the 
direction experiencing the maximum variance of the resolved shear stress (Fig. 1b), the 
amplitude, τa, and the mean value, τm, of the shear stress relative to the critical plane can 
directly be calculated as follows: 

( )min,MVmax,MVa 2
1

τ−τ=τ ; ( )min,MVmax,MVm 2
1

τ+τ=τ     (1) 

where τMV,max and τMV,min are the maximum and minimum value of τMV(t), respectively. 
In a similar way, the amplitude, σn,a, and the mean value, σn,m, of the stress 

perpendicular to the critical plane, σn(t), turn out to be: 

( )min,nmax,na,n 2
1

σ−σ=σ ; ( )min,nmax,nm,n 2
1

σ+σ=σ ,             (2) 

σn,max and σn,min being the maximum and minimum value of σn(t) during the loading 
cycle, respectively. 

Assume now that the component of Figure 1a is subjected to a complex system of 
time-variable forces resulting in a stress state at point O whose components vary 
randomly in the time interval [0, T]. According to the MVM [8], the critical plane can 
be determined also in such circumstances by directly locating that plane containing the 
direction, MV, experiencing the maximum variance of resolved shear stress. As soon as 
the orientation of the critical plane is known, the mean value, τn,m, and the amplitude, τa, 
of the shear stress relative to the critical plane take on the following values (Fig. 1c): 
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By following the same strategy as above, the equivalent amplitude and the mean 
value of normal stress σn(t) take on the following values [8] (Fig. 1c): 
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Another problem which has to be addressed explicitly is the way of performing the 
cycle counting under VA uniaxial/multiaxial fatigue loading when the fatigue 
assessment is performed through the MWCM. In particular, since, as said above, under 
CA fatigue loading, the MWCM takes as its starting point the assumption that fatigue 
damage reaches its maximum value on the plane of maximum shear stress amplitude 
[7], it is logical to hypothesise that, under VA fatigue loading, resolved shear stress 
τMV(t) is the stress channel to be post-processed in order to efficiently count fatigue 
cycles. Owing to the fact that, by definition, τMV(t) is a monodimensional quantity, the 
cycle counting can then be performed according to the classical Three-Point Rain Flow 
Method: by so doing, from the counted shear stress cycles, the corresponding 
cumulative spectrum can directly be built and subsequently used to estimate the fatigue 
damage content associated with the assessed load history (Fig. 1d). 

To conclude, it is worth observing that the available Standard Codes and 
Recommendations usually address the problem of designing weldments against fatigue 
in terms of ranges. Accordingly, the ranges of the stress quantities relative to the critical 
plane can be calculated as follows: 

a2 τ⋅=τΔ ; a,nn 2 σ⋅=σΔ           (5) 
where the amplitudes of the two relevant stress components have to be calculated 
according to the definitions reviewed above, that is, by distinguishing between constant 
and variable amplitude situations. 
 
 
THE MODIFIED WÖHLER CURVE METHOD TO DESIGN WELDED 
CONNECTIONS AGAINST VA MULTIAXIAL FATIGUE 
 
In the present section the way of using the MWCM to perform the multiaxial fatigue 
assessment of welded joints is investigated by specifically considering VA multiaxial 
fatigue situations, the CA problem being a simpler sub-case. 

Consider then a welded joint damaged by a complex system of cyclic forces: as 
schematically shown in Figure 1a, the stress state to be used to determine the necessary 
stress quantities relative the critical plane has to be determined, along the bisector, at 
distance from the weld toe apex (or the weld root apex) equal to M-DV, such a critical 
distance being equal to 0.5 mm and to 0.075 mm for steel and aluminium welded joints, 
respectively [5, 6]. 

The MWCM estimates the fatigue damage extent associated with the assessed load 
history through the ranges of the stress components relative to the critical plane, the 
combined effect of the shear and normal stress being taken into account by means of the 
following stress ratio [5-7, 9]: 



τΔ
σΔ

=ρ n
w                (6) 

The most relevant peculiarity of the above stress quantity is that, thanks to the way it 
is defined, ρw is seen to be sensitive to the degree of multiaxiality and non-
proportionality of the stress state at the assessed critical point: for instance, ρw is equal 
to unity under uniaxial fatigue loading, whereas it is invariably equal to zero under 
torsion [7]. Intentionally, the critical plane stress ratio is instead insensitive to the 
presence of non-zero mean stresses: this suggests that ρw as defined above can be used 
solely to perform the fatigue assessment of weldments working in the as-welded 
condition. On the contrary, in stress relieved welded joints, the effect of non-zero mean 
stresses cannot be disregarded and the presence of superimposed static stresses is 
usually taken into account through appropriate enhancement factors [1], their in-field 
usage being explained below in great detail. 

As soon as ρw is known, the position of the pertinent modified Wöhler curve has to 
be determined (Fig. 2d), where the negative inverse slope, kτ(ρ), and the reference shear 
stress range, ΔτRef(ρw), at NA=5·106 cycles to failure are suggested as being estimated as 
follows: 

Steel 
Welded Joints 
PS=97.7% 

( ) 52k ww +ρ⋅−=ρτ  for ρw≤1 
( ) 3k w =ρτ  for ρw>1 

( ) 6724 wwfRe,A +ρ⋅−=ρτΔ  [MPa] for ρw≤2 
( ) 19wfRe,A =ρτΔ  [MPa] for ρw>2 

(7)

Aluminium 
Welded Joints 
PS=97.7% 

( ) 55.0k ww +ρ⋅−=ρτ  for ρw≤4 
( ) 3k w =ρτ  for ρw>4 

( ) 285 wwfRe +ρ⋅−=ρτΔ  [MPa] for ρw≤4 
( ) 8wfRe =ρτΔ  [MPa] for ρw>4 

(8)

The ΔτRef vs. ρw relationships reported above are strictly valid solely to assess 
welded joints working in the as-welded condition. On the contrary, if the welded joint 
being designed is stress relieved, then a procedure similar to the one recommended by 
Eurocode 3 is proposed to be used [5]. In particular, an effective shear stress range is 
determined by adding the tensile part to 60% of the compressive portion of the shear 
stress range. Accordingly, by adopting a strategy similar to the one suggested by the 
IIW [10], a suitable shear stress enhancement factor, f(τ), can directly be calculated as 
follows: 

( ) 1f =τ  for ( ) 0am ≥τ−τ ; ( )
amam

a

6.0
2f

τ−τ+τ+τ
τ

=τ  for ( ) 0am <τ−τ      (9) 

Further, in order to properly take into account the damaging effect of those stress 
cycles of low stress amplitude (Fig. 2d), according to Haibach [11], the negative inverse 
slope has to be corrected in the long-life regime as follows: 

( ) ( ) 1k2m ww −ρ⋅=ρ ττ          (10) 
where the knee point is recommended to be always taken at Nkp=108 cycles to failure. 



By taking full advantage of the classical Rain-Flow method, the resolved shear stress 
cycles can now be counted (Fig. 2e) to build the corresponding load spectrum (Fig. 2f). 

 

 
Figure 2. Design against VA multiaxial fatigue loading according to the MWCM. 

 
 

Subsequently, the calculated load spectrum can directly be used, along with the 
adopted modified Wöhler curve, to evaluate the damage content associated with any 
counted shear stress cycles (Figs 2f and 2d), the estimated number of cycles to failure 
being equal to (Figs 2g and 2h): 
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Finally, it is worth observing that, as recommended by the IIW [10], the critical value 
of the damage sum, Dcr, is suggested as being taken invariably equal to 0.5. 
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(c) 
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(d) 

Figure 3. Accuracy of the MWCM applied along with the TCD in estimating fatigue 
lifetime of welded joints (ZMS = zero mean stress; N-ZMS = non-zero mean stress; 

AW = as-welded; SR = stress relieved; F= frequency ratio). 
 
 

VALIDATION BY EXPERIMENTAL RESULTS 
 
In order to check the accuracy of the MWCM applied along with the TCD in estimating 
fatigue lifetime under both CA and VA multiaxial fatigue loading a number of data sets 
were selected from the technical literature. In more detail, our approach was initially 
employed to estimate fatigue results generated, under CA multiaxial fatigue loading, by 
testing steel and aluminium welded samples having different geometry [12-22]. The 
considered VA results [12, 13, 23] were generated by adopting the classical LBF 
Gaussian spectrum having sequence length equal to 5·104 cycles [12]. 

In order to show the accuracy of our local approach, initially the error diagrams of 
Figures 3a and 3b report the predictions made (for a probability of survival, PS, equal to 
97.7%) by considering the results generated under CA multiaxial fatigue loading. The 
above charts should make it evident that our local method is capable of correctly 
evaluating the degree of multiaxiality and non-proportionality of the local stress field 
when they depend not only on the geometrical features of the assessed welded 
connection, but also on the specific characteristics of the investigated CA loading path. 
Finally, the charts of Figures 3c and 3d show the accuracy and reliability of our local 



method in estimating fatigue lifetime of welded joints subjected to VA multiaxial 
fatigue loading: this result suggests that our approach can safely be used to perform the 
fatigue assessment of welded joints subjected to in-service VA multiaxial fatigue 
loading by fully complying with the recommendations of the pertinent Standard Codes 
and Recommendations. 
 
 

CONCLUSIONS 
 

The MWCM is seen to be successful in estimating fatigue lifetime of both steel and 
aluminium weldments subjected to CA as well as to VA multiaxial fatigue loading: 
accordingly, it is a powerful candidate to be considered for being included amongst 
those method recommended by the pertinent standard codes. 
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