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ABSTRACT: For the design of the construction which in the dynamical creep and fatigue
work conditions knowledge of the modified Haigh's curve of the equal limiting dynamical

creep sirain in the dependence form o[ - stress intensity of the mean siress tensor o and

o} - intensity of stress amplitud tensor oy is wanted. A problem of the phenomenon is very

complicated because the investigations results are dependent Jrom of the: IL.material type,
2.temperature, 3.cycle numbers, 4.stress states. The several qualitative methods for the
interprefation and assessment of the observed are possible, namely: metal physics,
micropolar waves theory, non-potential creep theory. In this last method it is necessary
applay the creep anisotropy evolution which show the dispersion hardening, neutral state
or weakening,

Introduction

The assessment hardening, weakening and damages of the metal alloys in vibrocreep and
fatigue processes for by the investigators have been immensely essential tasks for several
years. The mechanical creep strength theories are based on the material structure change in
the process damage. Such damage theory by Kachanov (1) was presented. By this theory to
the general creep equation the scalar parameter o is ushered which is dainage measure.

Nextly Rabotnov’s (2) the second rank damage tensor Q was used and the creep equation

system was formulated in the form:
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d=fc,Q),  =q(o, Q) ‘ (1)

where: d - small strain tensor, Q - second rank damage velocity tensor, ¢ - Cauchy’s
stress tensor.

In paper (3) Murakami and Ohno the certain application suggestion of the second rank
damage tensor for the creep tubular sample creep description was given.

The sugestions of Murakami and Ohno were applied in paper (4) by Sawczuk and Litewka
namely, to the damage simulation by the regular sample (with sheet alumminium)
perforation in the form of system slits, which mutually parallel in each system were. The
investigations of Young’s modulus dependence from an angle were shown. These
investigations also showed that internal damages can describe a certain second rank tensor
and this was a confirmation of sugestions in paper (3). The equations were described in the

form:
E=E(T,D), D=D(T, D) 2

where: E, T, D - second rank tensors - Euler's strain, Pioli Kirchhoff’s stress tensor, D -
damage tensor. Definitively the general constitutive relation, i.c. Eq. (2) was limited by

Litewka (5} to the form

E=AYT 3)

where anisotropy tensor A js depended only from the independent damage tensor DY,
Except from the papers mentioned above one can still indicate on an interesting paper on
the creep in multiaxial stress states by Murakami and

Sauomura (6) which also the damages takes into account.

The examined papets regard for to the second rank danage tensor in the immediate load
and creep conditions.

The correct description of the dynamic creep fatigue one can obiain when the rank
anisotropy tensor is applied. In this paper the thesis is formulated that such possibilities give
the ,,No-potential theory of the construction of anisotropic creep constitutive laws” by
Jakowluk and Mieleszko (7) in the form:

d=G(0. A6 o d=GoDAM)o )
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where: d - Buler’s strain velocity tensor; G(Owqg) - nonlinearity function, Oreq - Teduced
stress; A™(t") - fourth rank anisotropy tensor which the time process of the evolution
subject; '(0, 1) - nermalized time: @ - Cauchy’s tensor,

The main task of this paper is to investigate the variable of the some anisotropy tensor co-
ordinates for A“Ye) in (he time in the cyclic load process which the hardening, weakening

or failure cause.

Theoretical base description of the evolutional anisotropy changes for

the in cycles variable loads

The tubular samples one can load as follows: axial force, internal pressure and forsion

moment. This gives the following stress tensor co-ordinates

Gy Op, -
Ou=|0y Op - 5
- - Oy

The G353 co-ordinates is a radial stress &, which generally is overlooked for the thin-walled
samples. However it is equal 3-5% of the siress Gy = G3,. From here one can describe Gy =
MGy, where m - coefficient. For such approach in the investigations is possibility more of
the anisotropy matrix co-ordinates Ay applay.

It taking into account'and triple the Ay matrix symmetry, from the following equalities:

Cu = Gy, & = &; and 0 O';jla £y = 0 G/ 3L i at that time Eq.4 one can describe in

the following matrix form:
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r d11 ] HAllll AII22 'AI13] 2[xllﬂ 2IXHIS 2A1112.—# Gll
d22 AZZ[I A2222 2A2233 2A2223 2A 2213 2A22]2 022
d33 — ("'}(G d) A33ll A33'22 A3333 2A3323 2A3313 2A33]2 mGZ‘Z

- N 2'AZ!|211 2A3222 2A3‘233 4A3223 4A3213 4A32l2 -
- 2AJnlll 2A3]22 2A3I33 4A3l23 4A3I13 4A3112 -
_2d12_ _2A2Hl 2A2|22 2A2]33 4A2123 4A2]13 4A21|2__ 0-I2

(6)
Taking into account that dj3 = dy = 0{0)3 = G = 0) and also the anisotropy tensor
symmeltry, at that time the independent co-ordinate matrix of the tensor A*? will be in the

form

(Aun Ann Aum — -~ 24y,
Apn Apy — — 245,
A - - 2A
A = 3333 - _3112 o
i 485112

The whole matrix by Eq. (7) dividing on Ajj, and simultaneously on this quantity
multiplied the E}((Sred) one obtain, (“j((}'led A1, = G0,y ). From .

matrix (7) we can obtain 10 anisotropy co-ordinates on the general number

21 independents.

Immediate determination of the anisotropy co-ordinates Ajy, by ahisol'ropic Eqgs.(6) the co-
ordinates dy, oy and nenlinearity function G(Gpq4) knowledge is required. This one can

achive by the general functional minimization in the form

M@, n, A% = ¥ (G,, ~G,)’ )
{ay

where: G - experimental funclion G(G..q) values which is determined by the following

equation
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Greay = dij /(ZAijkIle) 9)
Kl

G - theoretical function values by G(Grg) = Gi[B, G (n, 6)]. The knowledge of matrix
[dj] the creep, vibrocreep or fatigue strain investigations are obtained. The numbers of the
measured sirains, as it is known, is limited. The number of the functional by Eq.(8)
variables decrease if earlier the vectors B and n are pointed or tensor co-ordinates Ajja.
Beyond in the investigated process the veryfication of the creep velocity curve similarity is
demanded. For example, in the tension and torsion, applying, for example 1) 1; = 2d,./d;,
for A = 012/6)) = 0.5; 2) K, for &, = 2. At that time in the system 2d;, - dy), by the positive
veryfication two different experimental straight lines are obtained.

The paper task is to prove that in the temporal processes as the vibrocreep and fatigue the
weakening, neutral or dispersion hardening processes, at the dependence from kind of steel

alloy and temperature are dependent.

Anisotropic hardening description of the steel FeMnAl alloy in the

creep and vibrocreep processes

For the static anisotropic creep of the steel FeMnAl alloy at the room temperature and in
biaxial stress states (tension and torsion) Eq.(4), by Jakowluk and Mieleszko (8) receivs the

following system equations:

dy) = G(Oea)lon +1o12] . 2dj3 = G(Gg)[lo)) + ko)) (10
where:

aun =1 apne= . =aqu =12,  app=..=ay =kM, (11)

he course of the creep anisotropy curves 1 and k° are shown in Fig.1.
Vibrocreep tesis were performed also on the tubular samples on the vibratory tension and
static torsion room (emperature. Siress state variability of vibrocreep for S0Hz the following

tensor 6(t) co-ordinates are characterized:
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oy ()= Gﬂ +0oasint, ), =const, 0'12/0:'} = A ~ stress state, (12)

klll T_. kV kC
[
4 /7;
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a-f_ﬁ 1 L 1 1 [T & l/_ o
5 10t

Fig.1 Creep anisotropy coefficient evolution k%, I and vibrocreep

anisotropy evolution k', 1" for steel FeMnAl alloy
but stress intensity has the form

c-.(t):Gf(l+A(,isinmt), Ag =cl/al, of=0o} (13)

5 m 2 2 12

For the vibrocreep description by Jakowluk and Mieleszko (9) the subslitute static stress

tensor on the vibration direction was applied

112
2
di =0y +poj; ad O} =[(oi'§‘ + pc;‘i) +30'|221| (14)

In this paper statistical was shown that for the metals, for small A values one can receive
1

the mean value p = 0.5. The tests were performed by AGi = 0.01, 0.1; 0.2 for stress

intensity values o; = 455, 470, 486, 502 [Mpa] and X = 0; 0.5; 0.2 and also strains were
measured €y, 28,3 but velocity were calculated dy, and 2d,.

In the task of the anisotropy coefficients k and 1 determination Eq, (10} are transformed

applying
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K= Al (15)

and taking out k; = 2d,,/d,, for different time t values and A = 0.5 and 2.0 we obtain:

k+[2-160)0=2x(), k+[0.5-x(t)]l = 0.5x(t) (s)

Solving the equation system towards k and 1 for the vibrocreep - k¥ and ¥ coefficient values
for different tine were obtained. The results are shown in Fig.1. From this figure results that
for t = O the anisotropy coefficients k, =3 but I,= 0, i.e. a material was isotropic applied
for HMH criterion. This is, from here, of anisolropy in this stress state the coefficient |
decides. It is interesting that vibrations nearly completely the creep anisotropic strain

hardening annihilate because [*{(t) = 0.

Evolution fourth rank anisotropy tensor in the vibrocreep process to

the fourth rank damage tensor

Vibrocreep of the grey cast iron ZI200 is examined. These investigations by Jakowluk and
Mieleszko (10) were presented. The tests at temperature 573K and in biaxial stress states
for the A = ox/5y; = 0, 142, 2 for the range of stress intensity o; = 165 - 220 MPa and for
frequency 50 Hz were performed. On the tension direction very small vibration of stress

m

amplitude coefficient A, =&,/ 67} =0.007 and for frequency 50 Hz were applied.

Practically it gave that G ﬂ = Q| 1mnax - The experimental investigations in the diploma

paper by Suchwalko (11) were performed. The general equation of the non-potential

anisotropic creep theory, i.c.

n
red

d= GO A0,  G(Owa ')=BO
(17)
Ored = POrax + (1 - B)0; - Sdobyrev’s criterion
which to the unsteady creep description in the first and third stages is generalized. From
here for the tension with torsion of the tubular samples two equation system was obtained,

ie.
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dn(t") = G(Gralon + 1(1)G12], dn(t’) = G(See)[HE)on + k(U)o15]  (18)

where G4 Bq. (17);. The courses of the anisotropy coefficients k(t’) and 1(t") alre presented
on Fig.2,

From Fig.2 results that material in intial state was isotropic bacause for t = 0, the
coefficient | = @, Tn the vibrocreep process we have anisotropy evolution but in the third
stage we see the intensive damage process and a

failure. Because the materiat is brittle from here the third creep stage is very short, i.e.
098< t;<1.
and one can assume that the whole creep process G,.q = constant,
&t k!
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Fig.2 Anisotropy coefficients k(t*) I(t*) evolution in vibration in vibrocreep

process tension with torsion: grey airon 200 ZI, T = 573K, 1'-"1,:,.i = 0.007.

The failure condition ene of two Eqs.(18) and strength criterion by Eq.(17); is determined.

Instead the nonlinear function G(G,.q) by Eq.9, ftom experimental data, is appointed. From

]

the confounded equation for normalized time t., when t. = 1, one can determine the

failure time t, for the brittle material.
For the ductile material problem is complicated because at the third creep stage also the
reduced stress can be of the damage anizotropy tensor function A”) =D™, jee.

G(Org) = GG, 1, A), Greg = Grea(S, A) (19)
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Fatigue interpretation possibilities of weakening character or dispersive

hardening

For the design of the constructions which in the dynamical creep and fatigue conditions

work, (he knowledge of the modified Haigh’s curve of the equal limiting dynamical creep

strain in the dependence from G}" - siress intensity of the mean stress lensor O'H‘ and OF -

intensity stress amplitude tensor 0:} and wanted. The problem of the phenomenon

assessment is very complicaled because the investigation results are dependent from of the:
1. material lype, 2. temperature, 3. cycle numbers, 4. stress states. The several qualitative
methods for the interpretation and assessment of the observed phenomena are possible,
namely: melal physics, micropolar waves theory by Jakowluk (12).

Several authors, summing up the investigation tesult, two different curves types in the
Haigh’s system by Fig.3 were offered.

Curve I by Vitovec (13} the melal alloy curves represents which by the dispersion, at
high temperatures, are strengthened but curve II, by Kennedy (14) and by Jakowluk (15)
represents the curves for the pure metals and simple alloys which at lowered temperatures

are weakened,

% I

I

o o

Fig.3.Possible curve types, characterized the o, and o, action, which to equal strain in
creep for the estabilished time or to identical life ¢, leads: I - for metal alloys
dispersion hardening at the high temperatures, I - for pure metals and simple alloys

at the low temperatures.
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The fundamentat investigations on the fatigue temperature influence of the steel S-816 alloy
in the uniaxiat tension by Vitovec and Lazan (16) were performed. The generalized Haigh's
diagram form in the 6,,/R,, - G,/0; co-ordinates is presented on Fig.4, where R,, - steel alloy

strength.

ot

f o8
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Fig.4. Haigh’s diagrams in the nondimensional co-ordinates for the samples an alloy
steel 5-816 at the temperatures [K]: a-297, b-1009, c-1090, d-1173, ¢-linear failure law,

f-nonlinear law in the form a circle
Presented investigation results of the alloy steel S-816 at different temperatures carry in the
very umportant conclusions, namely: 1) The alloy steels al the elevated and high
temperatures experience the considerable dispersion hardening at the vibration existence

conditions. 2) For the economical regard the alloy steels it is necessary applay at the

optimum work temperature.

Material fatigue in biaxial stress states

In the dynamical creep processes in complex stress states how the correct sterngth criterion

for the metals one can assume the formulated criterion by Sdobyrev, i.e.

Oq =0 p+(1-B)o; @
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where: o; - maximal principal stress, o; = (L), } - material constant for the isothermal and

static processes of which the values are within the range of 0SB <1, for p = I - britle

rupture, } = 0 - ductile rupture. The generality of this criterion is due to the fact that it is

function F dependent on the three invariants by Jakowluk (12), i.c.

(L Ly Ls; )= 0 e

For the vibrocreep and fatigue conditions the Sdobyrev’s criterion by Eq. (24} is modified.

Namely, material constant § exceeds on the material function by Jakowluk and Plewa (18),

i.e.

B=B(As,) (22)

For the axial vibration and static torsion of the tubular sample for the aluminium AlMgSi
alloy at the room temperature investigations by Jakowluk and Jermolaj (19) were obtained
and are presented on Fig.5.

From Fig.5 results that in biaxial stress states vibraticn action on the aluminium alloy

structure at the room temperature nearly no induces of the strain hardening.

§
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Fig.5 Haigh’s curve fatigue for the aluminium AIMgSi alloy at room temperature.
The investigation results of the steel 15HM alloy for the fatigue in biaxial stress states

(axial, vibration and static torsion} at 823K temperature by Jermolaj (20) are presented
in Fig.6,
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Instead from Fig. 6 results that in the biaxial stress states the vibration action at the elevated

temnperature just as uniaxial stress state induces the dispersion hardening.

100+ ‘
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Fig.6 Haigh’s curve fatigue for the steel 15HM alloy in biaxial stress states at
temperature 823K

Additional information and conclusions

Very efficacions mathematical model of the hardening or weakening metallic material in the
vibrocreep and fatigue is no-poiential theory of the anisotropic creep by Eqgs.4. In Fig.1 it
was shown that the temporary anisotropy functions k°(t) and 1°(t) for the tension and torsion
of the tubular samples in the static creep process of the steel FeMnAl alloy at the room
temperature increased. This effect is of the strain hardening results.Instead in the vibrocreep
process the anisotropy functions k¥(t) and 1°(t) have nearly constant values. This is the
equilibrium results of the strain hardening.

The vibrocreep investigations results of the grey iron ZI1200 at temperature 573K in tension
with torsion in the function from of the anisotropy coefficients k(t") 5nd I(t") gave the
possibility to investigate a evolution these anisotropy coefficients in the all three creep

stages. For so brittle material as the grey iron, third creep stage was contained at the very

narrow normalized time interval, ie. 098 <t; <1, where

320




=, (23)

t’ - normalized time, (, - rupture time. From here results one generality applications of the
no-potential anisotropy creep theory by Eq.(4) because the anisotropy tensor A’ can be
applied as the damage tensor D,

In the biaxial stress states fatigue of the aluminiumn AlMgSi alloy at the room temperature
(Fig.5) has weakening character likewise as uniaxial sicss state.

The fatigue in biaxial stress states of the steel 15HM alloy at elewated temperature likewise
as uniaxial stress states has the dispersion hardening character (Fig.G).

The dispersion hardening and weakening phenomena of the materials in the fatigue
processes one can interpretate using the micropolar waves which by Parfitt and Eringen
(21) were formulated. Generally one can confirm that by the micropolar waves in the
investigated sample the matter transport is induced in the form: free atoms, vacancies,
dislocations and other physical microobjects. In the effect these processes give in the
suitable conditions the dispersion hardening or weakening of the metal alloys.

These waves action the probabillity efficacy from here results that in the classical for the
vibrated sample tension we have only one longitudinal plane wave, while in the micropolar
body four micropolar planc waves by Fig.7 are propagated. It is necessary still the multitude

of the reflected waves.

Tig.7.Displacement and wave microrotation: n, - wave propagation direction, 1 - plane
wave u, for propagation velocity vy, 2 -longitudinal rotation of plane wave @, for v;, 3
- transverse wave U for propagation velocity v4, microrotaton transverse wave @ for

propagation velocity v p

Ky3]




Investigations of the static and dynamic micropolar strains in the several solid body their
existence were confirmed. From here the indirectly existence micropolar waves by

Jakowluk A. et al (22) were performed.
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