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ABSTRACT : Some tension-forsion loading experiments on thin tube specimens of a Cu Zn Al
polycrysialline shape memnory alloy have been performed with a specific experimental device.
Proportional loading tests permit to verify the normality rule for the pseudoelastic strain rate and
allows the experimental validation of the thermmodynamical model of pseudoelasiic behaviour
developed by Raniecki et al. Non proportional loadings show how the pseudeelastic behaviour
depends on the closen siress path. The chosen training path seems to have little effect on the
obtained efficiency values which are very high (around 70-80 %). A microstructural experimental
study is presently done to understand the mechanisin of formation and reorientation of mariensite
plates when the sivess vecior direction changes.

Intreduction

Until now, mechanical models of, for instance, pseudoelastic behaviour, used to be written
and also valided only on the 1D direction of the uniaxial stress. Nevertheless, it is necessary
to understand the S.M.A. behaviour under a multiaxial loading since it is the case in the
most of industrial devices. Some tesis on mechanical structures have been performed for
"complex” loadings : thin rectangular plates loaded in torsion (1), thin rectangular plates
loaded in flexion by a terminal force (2), springs loaded in "tension” (2) or in compression
(3).... But these tests were realized either in order to study the efficiency of training, either
in order to analyse the microstructure evolution.

In (4), B. Raniecki et al. write a three-dimensional model of the pseudoelastic
behaviour of S.M.A.. In order to verify some of their hypothesis, some tridimensional (3D},
or at least bidimensional (2D) loadiné tests have to be performed. The simplest
bidimensional loading to realize is a tension-torsion one, Some similar experiments on SMA
have been presented in (5) but samples were rigid bar specimens (Cu Al Zn Mn) which are

associated with an important shear stress gradiant in torsion.
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To have a more simple stress tensor, tension-torsion proportional loading tests on
thin tubes have been carried out and presented in this contribution, It must be noticed that
some resulis on this kind of test are presented in (6), but these experimenls were performed
on Ni Ti polycrystal and they still are quite qualitative, More over, there are few tests
examinated,

In this paper some non proportional loading tests are also exposed, to show the
importance of loading sequence. Training of samples during these tests have been

quantified. Finally, the modelling described in (4), is applicd on a proportional loading test.

I. Experimental process

The tests have been performed on a Cu Zn Al polyerystalline 8.M.A. without any
additional component (weight composition : Cu 70.17 %, Zn 25.63 %, Al 4.2 %). Its
characteristic phase transfermation temperatures, determined by home electric

measurements are : Mg=287 K; M=278 K ; Ag=290 K, Ap=293 K.The heat treatment

is quite classical. Samples are heated at 1123 K during [5 minutes, quenched in a 393 X oil
bath and maintained at this temperature during one hour. The samples are carried out few
days later, in order to make the austenitic phase more stable.

The technical process is well described in (7). The sample dimensions lead to use

the (hin tube condition. The stress tensor is, with this assumption :

0 0 0
g=[0 0 oy, (1)
0 O O

with

{ou =F/2nRe @

G, =C/2nR%e

F, C, R and e are respectively the axial loading force, the torque, the mean radius and the

thickness of the sample. It must be noticed that in the S.M.A. case, the thin tube condition
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must take into account the mean grain size which is about 1 mm, Some 1800 grains have
been numbered in the useful part,

Tests are performed on a Schenk 3D test machine (lension, torsion and internal
pressure), plotted by an H.P. microcomputer. Every test has been realized with a force

control. Temperature is maintained constant at T = 303 K (T> Apg). Stresses are calculated
from F and C values. The axial and torsional small strains €,, and €,5 can be easily

deduced by :

g, =AL/L
- (3
z0 IL

AL and A are the axial and the angular displacements measured by linear and rofative

sensors (L. V.D.T., R.V.D.T.). L is the active length.

I1. Experimental results

In first place are performed some proportional loading tests. In this case, the

equivalenl stress, in agreement with Von Mises criterion, is defined as :
= 2 2 .12
C = (0, +30) 4)

For each proportional test, the maximum equivalent stress O, is 110 MPa. As the loading
is proportional, axial and torsional stresses are linked each other (0,4 =0 0, where g,
fixed in each test, characterizes the direction of loading and can vary between O -pure
tensile test- and oo -pure torsional test-), Test frequency is 10-3 Hz, Loading and unloading
periods are similar. The first cycle is repeated 35 times in order to evalvate the possible
training of the samples.

The stress-sirain curve corresponding to the test with oo = 0,333 is presented figure

1, as a representative test. In (7), the study of the phase transformation yield stress value

versus o, evolution leads to define a criterion surface as o™ =30.3 Mpa. Generalizing the
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1D relation o™ = b(T - Mg), the constant b is found to be equal to 1.9 MPa.K-! which is

a classical value for a Cu Zn Al polycrystal. .. (8), uniaxial tests with the same alloy were

presented and b was estimated to 2.0 MPa. K1,
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fig.1 ¢ Tension-torsion proportional loading test (0=0.333)

And what about the pseudoelastic behaviour? For tensile tests, Vacher in (8) has
established the proportionality between the pseudoelastic deformation €™ and the volume
fraction of martensite z by electrical resistance measurements during mechanical tests. For a
2D or a 3D proportional loading, as in "plasticity”, the existence of a current flow surface
(G =cte) is postulated. It is homothetic to the initial one (™M = cte) ; the normality rule
i.e. the pseudoelastic sirain rate is perpendicular to this surface. In (7), an integration of the
pseudoelastic strain rate gives ;

3 devg
B =y 5 Yz 5

where ¥ is the maximal pseudoclastic strain obtained for a complete phase transformation

occuring in a tensile test.
To verify the validity of this expression, the evolution of €5 /€F; is proposed. In that way,

a parameter Q is defined as :
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From (5), Q is theoretically constant and equal to 2/3. Q mean values for three biaxial
loading tests are presented in the fable 1. It can be noliced that even Q seems to be a

constant, its value is slighty higher than the theoritical one.

o 0.333 0577 1

Q 072 075 0.75

Tab. 1 : Q value oMained for each proportional test

The equivalent pseudoelastic strain is defined by :

e w2, 4 per 12
e =| ek +En M

Its maximum value is reached when G is maximal (G,,, =110 MPa).The table 2 gives

E’::u for each test. In a pure tension test, efy is theoretically null and in a pure torsional

test, €f7 also. From the fable 2, the material seems to be slightly anisotropic. This can

explain why Q is not equal to its theoretical value.

Test 0 2 0.333 0.577 1
er® (%) 0.339 0,011 0,384 0.369 0.193

EZE (%) 0,025 0,215 0.173 0.277 0.356

T8 (%) 0.34 0.248 0.433 0.488 0.454

Tab. 2 : Experimental tensile and torsional pseudoelastic strain values
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The pseudoelastic strain measurements allow also to know the pseudoelastic sirain rate

vector £7°. As the loading is proportional, the following relation holds (from eq. (5)) :

pPe - Pe
Eze - €20 (8)
LA

zz 2z

Then, it's easy to draw £ on the (O'u.-\/?’— G,e) plane, for each test, when the
equivalent stress is maximal, as it is done on figure 2. This figure shows that the strain rate
vector is quite perpendicular to the loading surface (G, =110 MPa) which proves the

validity of the normality rule. Moreover, it allows to sec the expansion of the criterion

surface from 5™ =303 MPa to G, =110 MPa.
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fig. 2 : Experimental validation of the normality rule

After N, =35 loading-unloading cycles (between 0=0 and
G =G,,, =110 MPa), the training effect is also measured. The figure 3 represents the ten

first cycles corresponding 1o the test with a=0.577. The figure 4 shows the training effect on
this sample, placed (at a free stress state) in an oil bath which temperature varies from

232 K313 K,
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fig. 3 : the fist ten cycles of a training pracess (a) and the two way memory effect obfained (b}

In order to study the training effect, it is necessary to define three training

efficiencies : the tension efficiency, the torsion efficiency and the equivalent efficiency
(respeclively Pz :(Aeu)a=0/(52:max )N=Nm“ v Pn =(A€za)a=o/(5$mx)N=me and
p=(A€) ;- /(Eﬁu)nmm ). These efficiencies are measured for the five training tests.

These values seem much higher (around 75-80 %) than the ones obtained with a more
complex loading (for example in (1)) In (5), rigid bars are also trained in tension and torsion
in order to study the stabilization of stress induced martensite. Unfortunately, efficiency
values are not presented. Nevertheless, the pseudoelastic loop is stabilized after few cycles,
as in our experiments. Training values lead to assume that the density of dislocations is
quite important since in (9), it is said that the density of dislocations is a good parameter to
cvaluate the training effect. Actually, some microscopical analysis on biaxial tensile loading
tests are being performed to wellknow the microstructural phenomena. They will pechaps

verify this asumption.

In second place, it was interesting to study the effect of a non proportional loading.
Even if the modelling of such tests is, in most of cases, not simple, their interest appears in
answering to the question : "what is the effect of a rough change of the mechanical loading
upon the material’s behaviour 7" Indeed, in each single crystal, the best oriented habit planes
are activated (with respect to the maximum shear rule) for a given loading direction (10). If

the direction of the stress vector is changed by applying torsion above tension, other
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vaniants ("secondary variants") can be activated and interact with the primary variants.
Here, the interest is to see what happen macroscopically with a polycrystalline sample.
As in proportional loading tests, the maximum equivalent stress is 110 MPa but it

is reached from one of the four different possible pathes, 8 is an angle characterizing the

NN e

test (tg B= -——m“—J . Its possible values are 30°, 45°, 60°. For each path, the tensile
g

2z

(0,;.€,,) and torsional curves (0,q.€,5) are given (figures 4 to 7). So, the resulting
deformation path (£,4,€,,) is known. As it was already said in the previous part, material
isotropy is not perfect since during the first loading (uniaxial one), a small strain is
measured along the other axis. Maximum equivalent pseudoelastic strain Ef7, is higher

than in proportional loading tests. This observation confirms the assumption that new habit
planes ("secondary” planes) are activated when the mechanical loading direction changes.
Moreover, it seems that the hardening induced by interactions between primary and
sccondary habit planes does not play an important role. Morcover, during the second
loading (BC) it can exist a reorientation of primary variants with the change of the stress
vector orientation. Such variant reorientations are underlined in (5). In fact, during these
non proportional loading tests, an observation of the microstructure evolution is necessary
to understand the micromechanisms involved by the stress path. At the phenomenological

point of view, the correspondance between the shape of the imposed stress path and the

a0z N300
’ C DI__,, c
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resulting shape in the deformation path is interesting.
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fig. 4 : Tension-torsion non proportional loading test (path I, B=30°)
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fig. 5 : Tension-torsion non proportional loading test (path I, f=30°%)
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fig. 6 : Tension-torsion non proportional loading test (path 111, B=60°)
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fig. 7 : Tension-forsion non proportional loading test (path IV, f=45°)
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The training effect is also studied (11). The global efficiency p lies between 60 and

80 % but the dependance wilh the chosen path is not clear,

III. Modelling of a proportionnal loading test

In (4), Raniecki et al. propose to model the pseudoelastic behaviour in two steps.

First the free energy of the two phases system (A+M) is written as

D= (1 - Z)CD(]) + Z‘D(z) + AD (9)

@, and @, are the specific free energies of respectively the austenite and of the martensite

phases. A® is called the configurational energy and represents the interaction which appears
between the two phases, for example producted by incompatibilities between deformations.
The main characteristic of this energy is to disappear if only one phases is present in the

material. In agreement with Muller and Xu (12), the simplest expression is :

AD = z(1- )P, (10

(@, is the interaction energy (®,,(T) = ug - Tsg ).
In (4), the free energy expression is oblained as (z is the volume fraction of martensite and p

the volume masse of the material) :

®(g, T.2) = up — Tsp = zﬂ:f:('l‘)+2i(§ ~")Le - ") + cv[(T—-TD) - Tln[—:—]] +AD
p = -

1)

with ;

g:p%%:é(g—gpc)zge (12)
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S=—§r— (]3)
o (T)=(u} —ud) - T(sh —s2) = Au - TAs (14)

T} is the working force of the martensitic (ransformation without any stress. ug and s§
are the specific energy and entropy of the o phase (c=1 for the austenite and =2 for the

matlensite).
The thermodynamical force associated to the phase transition is :

1.-,‘=-%§=n.’,(T)+TE/P—‘I’i:(l‘ZZ) 1s)

The Clausius Duhem inequality (r'dz > 0} is chosen to be the criterion of phase transition

(4):

direct transformation dz>0 #f>0 (16)
inverse transformation dz<0 xnf <0

nf =0 represents the absolute equilibrium states of the system. It is instable if B, >0,

which is the general case. It is then possible to determine the equivalent stress threshold of

- . —AM .
the martensitic transformation o (point A of the figure 9) and for the reverse

transformation EMA (point Aj) as :
o = —~ w{T) = m (T
nf(oAM.z=0,T)=0 = O‘AM(T)=(;eq(z=0)=p-___.¢“( )~ Mo (T)

an
n@ =1 D=0 = E“"(T)=E°‘*(z=1)=E"“(T)—2pw
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The instability of the equilibrium induces that there exist no thermodynamical relation
which could give the equations of the hysteresis loop. Taking a similar framework as in the
plasticity approach, the functions \¥'; (for the direct transformation) and ¥, for the reverse

one are assumed to be constant during the phase transition. ¥(=0 and W;=0 are the

functions which represent the complete martensitic and reverse transformations (called also

the « cxternal loop »).

1 .
v1=% B
A y, =Cte<0
v, =Cte>0 | < 1
9 z=Cte
C Aq
M Wy, =0 _
€ ,

-

fig. 8 : Description of the external and the internal loops in the model of Ranjecki and al. (4)

Y¥,=n and ¥,;=m (m and n are constants) represents internal loops where the transformation

is not complete

{‘P, (0. T.z) =7’ (6. T.2) -k, (2) a8)

¥, (0, T,2) =—n' (0. T.z) + k4 (2)

The functions k; (z) and k, (z) arc chosen (4) such as the kinetics of the phase

transformation were in agreement with the classical ones of metallurgists :

{kl(z)=—(A| +B,z)In(1-2)+C;z (19

k,(@)=(A, -By(1-z))Inz~-Cy(l-2)
with
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Cr=20y(M,) , C,=20,(A,)
alAl =AS+SO f azAz =AS_'SO (20)
a;B, =a,B, =25,

Here is now presented an application to a tension-torsion proportional loading test.

The behaviour is elastic as long as the equivalent stréss has not reached the critical

. —AM
equivalent stress ¢ (2=0) :

o™ =(0,)™V1+3a2 . @1)

Then the pseudoclastic behaviour must be simulated. The volume fraction of martensite is
increasing from O to z4, which is the z value obtained just before the unloading. The

pseudoelastic flow is represented by ¥,=0. It gives :

=G +y0/p— D, (1-22) = ki(z) (22)

As during the whole test, tension and torsion stress are proportional (G = (5, W1+302

with 028 = 0iGzz ), it's possible to know the stress values by

p f
= ————|k;(z)+ D, (1-22)-n
w = 7 3ah @+ Pu -2 n] 23)
G.p =00,
The corresponding strains are splitted into two parts as :
€y = %M{z
. 24)
1+v . 3 (
o =0 (L0 322
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The reverse transformation is represented by the Wi=kq(zy) curve (kq(zy) is a negalive
constant) where zy is the volumic part of martensite at the end of the loading. So, during the

unloading and until the stress oy, the stresses are given by :

p
O = W[kz@)*kz(zd)" ul-2-m| o,
Ty =00,

Strains expression are stili given by the equation (24).

The seven parameters A;, By, C;, A, By, C; and ¥ which determine the k; and the k;
functions, @, and 7} are deduced from tension loading tests described in (2) by the

following constants,

Au As up S0 Y a a
(ke Uke'KY | okgh | gxe'k K" (X"
6944 2336 1495 4.22 00416 | 0032 | 006

The modelling of the test (o=0.577) is presented in the figure 9. The form of the loops are
growthly acceptable but some ameliorations are necessary. Nevertheless, it permits to valid

the 3D model proposed in Raniecki and al. in (4) and averall the stale equation of

pseudoelasticity (5).
3o,
" G
0]o (MPa)
lraction
601
404 _ model
torsion - !
1 ~— test
20+
N )

0 01 02 03 04 05 08
fig. 9 : Experimental and modelled curve of a proportional test (0=0.577)
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Conclusion ST

From the proportional and non proportional tests presented here, the number of
experimental dala in complex loading case has increased. Proportional loading tests permit
to verify the normality rule for pseudoelastic strain rate and hence allows the experimental
validation of the thermodynamical model of pseudoelastic behavior developed by Raniecki
et al. in (4). Non proportional loading tests brought a lot of informations not easy to
interpretate. It shows the evidence that the pseudoelastic non linear behavior depends on the
chosen stress path. The main physical features are the creation of new variants (called
"secondary” ones} when the stress dircction change, or (and) the reorientation of the first

variants under the stress. For an isothermal pseudoelastic cycling (N,,, = 35), both

proportional and non proporlional training processes present very high efficiency values :
this is a very good information for technical applications.

Some biaxial tensile loading tests are actually performed. The hope is in observing the
creation and, perhaps, the reorientation of martensite plate. These results will be very

usefull for explain the present study.
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