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ABSTRACT: The theoretical derivation of the Sracture crack initiation angle as a function of
induced crack angles of angled surface flaws under biaxial stress Sield is discussed in this paper.
The proposed meihod is an extension of the Erdogan and Sih approach from uniaxial to biaxial
tension-compression stressed models. This method assumes that the crack extends in a radial
direction and that the initial fracture crack angle, 8, is oblained by maximizing the hoop stress

along a circumference of a radius r. A series expansion including higher order terms in the hoop
Stress expression derived at a distance r from the crack tip with respect to the crack angles, P, is used
to determine the initial fraciure angles. Mohr’s circle is used to determine the Jinal expressions of
the stresses applied at an element close enough 1o the crack tip. The theoretical results of the crack
initiation angle as a function of the induced crack angle are compared to uniaxial and biaxial
loading cases and show excellent agreement with published resulls.

Notation

o biaxiality ratio

p induced crack angle

He coefficient of friction

0, initial fracture angle

Ox parallel stress

ay normal stress

Cg hoop stress

Tay shear stress at an element crack tip
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Introduction

A large number of publications dealing with the mixed mode problem was restricted
to uniaxial loading conditions; however, in many cases, most structures are subjected to
complex loading conditions such as biaxial loading. Erdogan and Sih [1] were among the
first investigators who (reated the problem of thin sheets with angled central cracks of
length 2a under uniaxial uniform tension. In their study, the initial fracture crack direction
was determined by assuming that the crack grows in a direction for which the hoop stress,
at the crack tip is maximum. A few years later, Williams and Ewing [2] modified their
theory by including the non-singular terms in the series expansion of the hoop stress
expression for better experimental correlations. Later, Finnie and Saith [3] pointed out an
error in the expression derived by Williams and Ewing [2] where the contribution of the
norinal stress to the crack was not included. It was laler accounied for by Swedlow [4].
However, a limited number of publications dealing with mixed mode problems under
biaxial stress field is published. Recently, Ling and Woo [5] were among the first
investigators who studied angled cracks under biaxial loading condition. Their study was
based on the extension and modification of Swedlow's [4] approach from uniaxial to biaxial
tension-compression stressed models. In their analysis, the closing and frictional effects
were taken into account by introducing a friction cocfficient in the series expansion of the
stress equations which led to the conclusion that the maximum hoop stress criterion is the
most appropriate one for both open and closed crack conditions as compared to other
fracture criteria for predicting the initial fracture crack angles.

Although these studies have considered the closing and frictional effects by
introducing a friction coefficient that takes account of this mechanism, they never
mentioned the possibility of crack propagation delay or even arrest in some cases given the
fact that the closing mechanism takes place only for large values of crack angles.
Therefore, based on this hypothesis, the present paper predicts the fracture crack angle and
focuses on the occurrence and effects of crack closure with respect to the biaxiality ratio

and the crack angle.
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Proposed Model

The problem of mixed mode fatigue crack initiation has been of growing interest to
both designers and rescarchers to predict the initial fracture crack angle under mulliaxial
fatigue loading. A good representation of a two-dimensional mixed mode loading case is a
straight surface flaw oriented at various crack angles, B, with respect to the maximun

tensile stress as shown in Figure 1.
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Fig. 1 Angled Crack Representation

This figure also shows an inclined induced surface flaw where §, @,, and o
designate, respectively, the angle of the surface flaw relative to the maximum tensile stress,
the initial fracture crack angle relaive to the original crack direction and the biaxiality ratio
defined by (o = G5/a) where o is the maximum tensile stress).

Fracture criteria applied to this problem have assumed that the initial fracture crack
angle, O,, can, in general, be determined by the stress field near the crack tip. The proposed
model is, therefore, based on the expression of the hoop stress near the crack-tip for a

biaxial stress field. The stress equation, in the form of a series expansion as presented in
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[2], takes the following form:
a o 0 31,0, .
Gy =J;cos—2—(oy-cos2? - ;y sin® )+ 6,.sin%8

2r
+J—.F Ty Ten,8 )+,
a ( ¥ Xy )

where Oy, Gy and Ty, represent, respectively, the parallel stress, the normal stress and the

(1)

shear stress applied at an element ahead of the crack tip, as shown in Figure |. It is worth
noting that the first term in Equation (1) gives the singularity as r approaches zero, where r
and a express the variation of both 6, and 7,y due to the presence of the crack. On the
other hand, the second term represenling the stress parallel to the crack is simply
superimposed on the stress distribution; hence, it is unaffected by r and a. For a localized
region near the crack tip, only the first term is considered since it dominates the solution.
Using the principal of the maximum hoop stress criterion postulated by Erdogan and Sih
[1], the initial fracture crack angle, 8,, can be obtained if the following conditions are
satisfied:
904 d°ap

Og|a >0, =(), —-] <0

by setting A = (2r/2)"? in Equation (1) and using the conditions of Equation (2), the
direction of the initial fracture crack growth, 8, can be obtained by maximizing Equation

Tg

d
(1) and setting =0 resulting in:

, B
[-3cos6 16a| Sy
o, —|—F T —— g.=0 3

Y [ sin@ :l Y 3| 1an@ x @

Equation (3) is the general expression for the maximization of the hoop stress, g, which
can be solved for the inilial fracture crack angle, 9, for a given stress field. The
expressions for G, G, and Tey depend on the nature of the loading conditions (uniaxial or
biaxial).

The proposed model, based on the approaches of Erdogan and Sih [1] and Finnie

and Saith [3] extends both methods from uniaxial 1o biaxial loading conditions. In this
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model, Mohr's circle is used to determine the stresses applied at an element ahead of the

crack tip of angled cracks. The normal, tangential, and shear stresses are given by:
6, = o(sin® B + o cos® B)
6, =0c(cos’Pp+asin?p) 4)
Ty =(1—0a)csinBcosp
Note that 6y and T,y , are equivalent to Mode I and Mode II stress intensity factors, Ky and
Ky, respectively. To better understand the presence of the stress acting ahead of the crack

tip, Mohr's circle was constructed as shown in Figure 2, which shows the stresses along the

x-y and the x'-y' planes for various biaxiality ratios.
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Fig. 2 Mohr’s Circle Configurations for Various Biaxiality Ratios

Note that the stresses applied at the plate, ¢ and ag, as shown in Figure 1, are principal
stresses. Therefore, it is necessary to rotate the crack element by an angle, B, in order to
determine the stresses applied at the element ahead of the crack tip. The angle, P, is the
orientation angle of the induced surface flaw with respect to the maximum tensile stress. By
substituting the values of 6, Gy, Ty from Equations (4) into Equation (1), we have

(0.+ tan? B)—(l—a)[l_:?ﬂ,-]tan B
sin@

.0 (5)
_ler |5

3 tan 9

(l+atan2[5)=0
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Equation (3) is the proposed model for relating the crack initiation angle, 9, to the induced
crack angle, B, and the biaxiality ratio, ¢, in a biaxial stress field. This equation is solved
using Newton-Raphson method and the obtained roots are denoted by 6,.

To check whether the derived equation is appropriate, it is reduced to the uniaxial case

when o = 0, taking the following form:

.0

2o [1-3cos® 162 315
t | ——1 " =0 6
an”p [ sin® ]aﬂﬁ 3 |16 ©

which is similar to the equation derived by Williams and Ewing [2] for uniaxial loading.

Theoretical Results and Discussion

The solution of Equation (5) is presented in Figure 3 showing the initial fracture
angle, 8, as a function of the induced crack angle, B, for values of biaxiality ratios, a,
ranging between -1.0 and 0.

Note that, for small values of crack angles, B, at a given biaxiality ratio, ¢, a wide
deviation is observed giving high values of 6,. This deviation is due to the effects of Oy
which causes the crack to close. This mechanism takes place whenever the stress value of
Oy becomes negative depending on the values of the crack angle, B, as well as the biaxiality
ratio, o, It is interesting to note that the closing effect {o, < 0) gets delayed as the biaxiality
ratio changes from -1 (compression-tension biaxial loading case) to 0 (uniaxial loading
case} since the stress values become negative for B < 45°. This phenomenon is illustrated
by Mohr's circle where the maximum shear stress is getting smaller and smaller as o
changes from -1 to O as shown in Figure 2. A relationship, describing this delay
mechanism, between the biaxiality ratio and Lhe crack angle for which the normal stress, oy,

becomes negative is given by:

I+o
1-o

+cos2B <0, for <0 (N
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Fig3 Fracture Angle vs. Crack Angle

This equation describes the conditions for which the normal stress to the crack
surface, oy, becomes negative. This condition is valid only for negative biaxiality ratios, o,
This delay is best described in Figure 4 which shows the biaxtality ratio, o, as a function of

the crack angle, f§, which triggers the starting points of the closing mechanism.
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Fig.4 Crack Angle vs. Biaxiality Ratio
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For example, for B < 45° and o = -1, Gy becomes negative causing a closing
effect rather than an opening effect on the crack surface. Therefore, there are two cases to
be considered: 1) the opening mode as expressed by Equation (5) where o is positive, and
2) the closing mode where G, is negative. The second case results in a Coulomb’s friction
type occurring at the crack surfaces; therefore, inducing frictional shear stress given by,

G¢ =W O, that must be added to the shear stress expression to take the following form:
Toy =(l—(x)o‘sinBcosﬁ+pf0'(sin2[5+a0052 B) 8

where |i is the cocfficient of friction. It is worth it to note that the second term in Equation
(8) must be included only for B < 45°, negative values of ¢, and when it larger than the first
term for motion to be impending. Therefore, to account the closing and frictional effect, it
is postulated that negative values of oy, similar to K, lead to a crack closing, that is, the
crack closes on itself creating friction on the surface of the crack. This condition requires
the elimination of o, from Equation (5) and the inclusion of the friction stress present in
Equation (8). Similar observations were also made by Swedlow [4] and Ling and Woo [5].
Therefore, substituting Equation (8) and setting 6= 0 for values of B < 45°, Equation (3)

becomes:
[ﬂ][(]_a)lanﬂ+uf(u+ta“2 ]
sin®
0
- el 9)
164 %2 2 (
— 2 d+at =0
e (1+c tan® B)

Therefore, modification of Equation (5) as expressed by (9) shifts the curve downward for

better correlations of experimental data; as shown in Figure 5.
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Fig.5 Fracture Angle vs. Crack Angle for Biaxiality Ratio of -1

Note that both curves deviate from one another for B < 45° and merge together starting from
P =45°10B = 90° due 1o ay effect. The solid curve represents the theoretical results of
Equation (5) where Oy is included; whereas, the dashed curve represents the theoretical
results of Equation (9) where Oy is disregarded and a friction term is added to the shear
stress in order to account for the closing and frictional effect. A comparison of (he proposed

model as expressed by Equation (9) to Ling and Woo [5] approach, is shown in Figure 6.
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It can be seen that both curves are in close agreement and correlates better
experimental data especially for 3 < 45° justifying the validity of the proposed model. In
addition, results, obtained from Equation (6) for uniaxial loading, were compared to the
maximum hoop stress fracture criterion developed by Finnie and Saith [3] and the strain
energy density theory developed by Sih {6] as listed in Table 1 and showed good agreement.

It can be seen that there is a slight discrepancy between the maximum hoop stress
criterion and the present method as compared to the strain energy density criterion (S-
criterion). However, this discrepancy tends to narrow for values of B > 30°. The difference
with the S-criterion is at(ributed to Poisson's ratio effect which was not accounted for when
deriving the hoop stress equation.

The proposed model is also compared with the experimental results conducted by
Ling and Woo on PMMA sheets with inclined crack angles as are presented in Figure 6. It

can be seen that the present model correlates well with the experimental data.
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Table 1 Comparison Between the Proposed Method to Other Fracture Criteria
Applied to Uniaxial Loading.

B [deg.] Present S-Criterion Percent Max. Hoop Percent
Method Difference  g-Criterion Difference
10 -82.88 -76.72 7.4 -77.3 6.7
20 -76.11 -70.0 8.0 -72.7 4.5
30 -70.46 -63.3 10.2 -68.17 3.2
40 -64.56 -56.5 12.5 -63.01 24
50 -57.65 -49.3 14.5 -56.74 1.6
60 -48.85 -41.4 15.2 -48.53 0.06
70 -35.51 -31.7 10.7 -37.13 -4.6
80 -20.53 -18.4 9.3 -20.92 -1.8
90 0.0 0.0 0.0 0.0 0.0
Conclusion

A proposed method relating the initial fracture angle, 8,, to the crack angle, B, was
developed. This method compared very well with other fracture criteria as well as
experimental results and proved to be as good as other fracture criteria. It was shown that
the closing mechanism takes place for crack anglés B > 45°. In addition, it was shown that
the closing effect was taken into account by neglecting the applied siress normal (o he
crack surface which causes surface closure, therefore Tesisting any crack propagation caused
by crack sliding only. It was also demonsirated that the closing effect was delayed by
increasing the biaxiality ratio from o = -1 which describes the tension-compression biaxial

loading case, to o = 0 which describes the uniaxial case.
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