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ABSTRACT: In order to avoid the loss of well-posedness in the post-localization range, some
continunm damage theories for elastic materials introduce higher order gradients of the damage
variable in the constitutive model. Although such theories allow a mathematically correct modelling
of the sirain localization phenomena, they are usually considered very complex 1o handle from the
numerical point of view. The present work is concerned with the momerical implementation of a
gradient-enhanced damage theory Sor elastic materials. A simple numerical technique, based on the
finite element method, is proposed fo approximate the solution of the resulting nonlinear
mathematical problems. The coupling between damage and strain variables is circumvented by
means of a splitting technique,

Introduction

In the last few years, many different continuum damage theories have been proposed,
Since the increase of damage generally leads to a local softening behaviour, the models
based on a local approach, see (1) and (2), may lead to a Physically unrealistic description
of strain localization phenomena when the hypothesis of quasi-static and isothermal
processes are considered. In general, due to the loss of ellipticity of the governing equations
in the post-localization range, the resulting mathematical probleins may present an infinity
number of solutions with discontinuous fields of displacement gradients what leads to

numerical difficulties of mesh-dependence, see (3) - (7).
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Some alternative approaches to the local damage theories have been proposed in the
last years, see (8) - (11) for example. The present paper deals with an alternative theory in
which the continuum is supposed (o possess a microstructure. Since damage results from
microscopic movements, it is proposed a reformation of the kinematics and of some basic
governing principles of the classical Continuum Méchanics in order to account for such
“micromovements”. The constitutive equations are developed within a thermodynamic
framework - the free energy is supposed to depend not only on the strain and the damage
variable but on the damage gradient as well. Besides, to account for microscopic effects, the
power of the internal forces depends not only on the velocity and its gradient, but also on
the damage velocily and its gradient

The main goal of the present paper is to present a numerical technique for
approximating the resulting nonlinear mathematical problems. The coupling between
damage and strain is circumvented by means of a splitting technique which allows to study
the nonlinear problem through a sequence of simpler linear problems. This technique
requires, at each time step, the solution of two problems: one similar to an equilibrium
problem in linear elasticity and the other similar to a heat transfer problem in a rigid body.
In order to assess the main features of the numerical method, a number of examples is

presented showing that the numerical computations are not mesh dependent.

Modelling

A body is defined as a set of material points B which occupies a region Q of the
Euclidean space at the reference configuration. In this theory, besides the classical variables
that characterize the kinematics of a continuum medium (displacements and velocities of

material points), an additional scalar variable B e[0,1], is introduced. This variable is

related with the links between material points and can be interpreted as a measure of the

local cohesion state of the material. If f=1, all the links are preserved and the initial
material properties are preserved. If p=0 a local rupture is considered since all the links
between material points have been broken. The variable B is associated to the damage

variable D by the following relation: § =1-D. Since the degradation is an irreversible

phenomena, the rate § must be negative or equal to zero.
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A detailed presentation of the basic principles that govern the evolution of such kind
of continuum can be found in (12), (13) and (14). A summary of the basic principles are
presented in this section. For the sake of simplicity the hypothesis of quasi-static and
isothermal processes is adopted throughout this work. Besides it is also assumed the
hypothesis of small deformation and consequently the conservation of mass principle is

automatically satisfied,

The Principle of Virtual Power

Let a body B that occupies a region  c RY with a sufficiently regular boundary I
be subjected at each time instant t to external forces gy: T, cl-» R?, b(t): Q= R?
to external microscopic forces p(t): Q >R, q(): T, cT—R and to prescribed
displacements u(t)=0 em I, cT",where T = Mur, and TN, =,
Under the hypothesis of slow deformations, the inertial effects can be neglected and the
principle of Virtual Power can be expressed as;

Ty + 7y =0 (1)

for any admissible variations of the fields (u and B ) that characterize the kinematics of the

medium,.

The power w;,, of the internal generalized forces &, F and H can be written as:
Ny = [ (0~ Vii)dV - @B +H-VByav 2)
: 0 Q
Here G: ©— R is an element of the set V, of the virtual velocities @i such that

4|, =0 and |§ : Q— R is an element of the set V; of the virtual variations of 3.

The corresponding power m,,, of the external generalized forces b, g, p and q assumes the

representation:

Mo = [ (b- D)V + [ (g- iy + [ oV + [ @Brda ©)
Q T, Q r :

Where p: Q— Ris defined as a microscopic distance force while q: 'R is a

microscopic contact force, both in duality with B. The microscopic forces are related to non
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mechanical actions {chemical and electromagnetic, for instance), that can cause an evolution

of the damage.
Under assumptions of m;, and m,, and Lhe hypothesis of slow deformations, the inertial
effects can be neglected and the principle of virtual power can be expressed as:

[ [o(Vi)-b-81dV - [(g-G)dA+ [[H-(VB)+FB-pBlav -

0 T, 0

~[wha=0, Viev,, vBev )
r

Constitutive Equations

Under the hypothesis of small deformations and isothermal processes, the free energy is

supposed to be a function of the deformation €, the temperature 6 , the damage variable B
and its gradient V{. In order to resume the presentation, the thermodynamic framework

used to obtain the constitutive equations is not presented in this paper, for further details see

(12). The final relations are the following:

o= (B_E)[ te( €)I+€] = PlAlr €)1 +2p €] (5)
1+v 1=2v
_ E v 5 B o
‘(2(1+v))[(l—2v) (tr(€))” +e.€] “’"'KB‘*CB"‘XB
=[%7\.(tr £)? +1l e.€] —W+RB+CB+RB ©)
H = k(Vp) (D

Where E is the Young modulus, v is the Poisson’s ratio and A and p are the Lamé

constants. The therms Ay and ?LI-} are lagrange multipliers associated, respectively, to the
constraints B=20 and ﬂSO, they are such that: lﬂ <0, ]39\[, =0 and ?"f} <0,
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The Mechanical Problem

Introducing the constitutive equations (5), (6) in (4), neglecting the external
microscopic forces (which are related to chemical or electromagnetic actions) and

considering the initial conditions: PB(x,t=0)=1, VxeQ, the following mathematical

problem is obtained:

Find {u(x,t), B(x,t)), respectively the displacement field u(t):.Q.—> R? such that

u(t)lr.l =1(t) and the field B(t) : 2 — R such that, for all time instant t € {0,1]:

[ BOM divadiv +2u equ). eV ~[ bo). v - [eida=0 ¥i e, (8)
Iy] Y] I

J’(kV[}).Vﬁ dv+_|’[ix(divu)2+u e.6— w]fdV + _[CBB V=0 ey
! a2 0
Subjected to the following constraints:
0<f e [350 _

And with the following initial condition:

Bt=0)=1

Numerical Aproximation

The nonlinear mathematic damage evolution problem resulting from the model,
accounting for the coupling between damage and displacement fields, can be solved through
a staggered algorithm, in which the coupled system is partitioned, often according to the
different coupled fields, and each partition can be treated by a different time-stepping
algorithm,

The approach proposed in this work is motivated by the realization that a partition of the
coupled system only defines an operator split of the evolution problem. In this context, a
staggered scheme is viewed as a product formula algorithm dictated by the specific operator

split, exactly as in the classical method of fractional steps, see (15). This point of view is
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also adopted in (16), where standard staggered algorithms for coupled thermomechanical
problems, consisting of an isothermal phase followed by a heart conduction phase at fixed

configuration, are cast into the format of a fractional step method.
Semi-Discrete Problem: Finite Element Methods

The solution of the damage evolution problem is based on a spatial discretization
using the Finite Element Methods (FEM} leading in a semi-discrete version constituted of a
nonlinear system of Ordinary Differential Equations (EDO). This system is accomplished
by means of a splitting strategy resulting in a sequence of simpler evolution problems,
which are in turn solved by standard techniques like backward and forward Euler and the
trapezoidal rule, see (17).

Let the base function (or interpolation function) traditionally provided by the MEF,

see (I8), N; e V!, where VI is a finite sub-space of the space Vo, and @; € Vé‘, where

V&‘ is a finite sub-space of the space V. These base functions allow the construction of the

following approxiinations:
My,
w (0= GONX), i=1,...,my
i=1

ny,

Bu(x. 1) =3 Bi(Dgi(x), i=1,...,m, (10

i=1
Where m,, is the nodal point number of the finite element mesh and h is the mesh

parameter, a scalar that is associated with the mesh refinement.

The semi-discrete problem is obtained by replacing u by v, and B by ,, defined by

equation (10), in equations (8) and (9). The semi-discrete problem is a nonlinear system of

ordinary differencial equations with the following form:
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K[(B,) lu=R (11)
CR+AB+F(w) =0 (12)
With the following initial condition:
Br(x =1 e u,(x,00=0
And the following constraints:

0<B(x, 01 e B (x,0)<0.

Where,
[K @Byl = [By (B'DB v, ij=1,..3¢m, (13)
[8]
(R = [b,N,dV ~ [N, dA ; (14)
[+ r
ICl;= [ Coip;dV, ij=1,..m, (15)
Q
[Al; = [(KVe; V@)V, i,j=1,...m,; (16)
A .
[F(g)]i=j[%(ﬁTDB u-w-wlg dV, i,j=1,...m, (17)
0

and B denotes the standard discretized differential operator and D is the matrix of the elastic

constitutive coefficients, defined according (18).

The Operator Split Technique Applied to the Semi-Discrete Problem

The Operator Split Technique is used to approximate the nonlinear semi-discrete
problem through a sequence of simpler linear problems. Two partitions of operator were

considered, one related to u, (“equilibrium problem”) and the other to By (“damage

evolution problem”). The proposed scheme can result in two different algorithms depending
on the order of the sequence of the operators. These algorithms, resumed below, will be
named DANOQ_| and DANQO_2,

The DANO_I algorithm first solves the “damage evolution preblem”, remaining the
displacement field unaltered. At this first stage, the associated ordinary differential equation

is solved using a time integration method, that can be described as:
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CIOP™ +(1- )"+ MO AP™ +(1-0) A"+ At "[6 F "™ +(1-0)F"]=0 (18)

Where, 8 define the integration method: 8 =0, forward Euler; 6 =1, backward Euler and

0 =1/2, trapezoidal rule, see (17). The subscript h was omitted and the superscript n

means that the function is approximated at the instant t, . Besides, F™*' does not represent

the function F evaluated at t,,,, since u,,, is not known. At the first phase (u=0) B s
calculated using u,,.

The second phase of DANQ_I solves the "equilibrium problem™:

K[(Em.]) ]Ll. n+l =Rn+l (19)
Where,

R gl = [ (00N 8V = [ (801 N) dA (20)
Q r

The DANOQ_2 algerithm consists in the order inversion of the stages of DANQ_1.

The computational implementation of the two algorithms can be considered simple,
since both algorithms can be obtained from a standard finite clement scheme. It can be
observed that “damage evolution problem” phase is similar to a heat conduction problem,

while the other phase, the “equilibrium problem”, is similar to a classical elaslicity problem.

Analysis of Numerical Examples

In order to assess the features of the modelling in a multiaxial siress state, a 'problem
of a square plate with a central circular hole is analyzed. The square plate (200 mm x 200
mm x 1 mm) with a central circular hole, which radius is 50 mm, is supported at the left side
and loaded with a prescribed displacement u(t} at the opposite side, figure 1. Because of the
existent symmetry the analysis is performed for the upper right quarter of the plate.

In this study was considered a plate of concrete, which has the following mechanical

characteristics: B = 27.0 GPa, w = 50x107° MPa, C = 10x10® MPas ¢
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k =02MPa.mm?, see (19). The prescribed displacement and the adopted time step are

respectively given by u(L,t) =t , (o0 = S.OxIO‘3mmls) and At=10x10"s.

u(t)

Ly AR
I

VAN

F—— 200mm —

Figure 1: Plate with a central circular hole.

The usual bi-linear quadrilateral finite element is used.

Damage Propagation

The evolution of the damage variable D = (1-PB) on the plate is depicted in figures

2 up to 3. These figures demonstrate that the damage initially appear at a local near the hole,
see figures 2 and 3, what is expected for a body with this kind of geometry and submitted to
a tension load. Then the damage propagates in the direction of the free end of the plate,

perpendicular to the load direction, until the plate is broken completely.
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Figure 2: Damage levels, t=2.5s.

Figure 4: Damage levels, t = 3.0s. Figure 5: Damage levels, t = 3.35s.

Mesh Dependence

To demonstrate that the problem solution is not mesh-dependent two different spatial
discretization meshes, that are presented in the figures 6 and 7, were used. The difference
between these meshes is the degree of the discretization in the region where the highest

levels of damage occur. Besides, the different levels of damage at the instant t = 3.0s,
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obtained using these meshes are also presented. The figures permit to observe that the

damage distribution are similar,

HITT T T 11711

Mesh-1: 274 nodes and 240 elements.

|

|

Figure 7: Damage levels, instant t = 3.0s, Mesh-2: 594 nodes e 544 elements.

The figures B permit to observe the behaviour of the damage along the longitudinal
lines A (x,y = 53.0 mm) and B (x, y = 60.0 mm), The shape of the curves and the values of

the damage at different points along the lines are almost the same,
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Figure 8: Damage along the lines A and B for different meshes.

The curves of the applied force x displacement obtained using these different meshes
are presented to complety the mesh-dependence verification, see figure 9. The result
represents the behaviour of the global structure. Once more, it is possible to note that the
shape of the solution is not affected by the different spatial discretization. Figure 9 also
permits to observe the softening behaviour. The same kind of no mesh-dependence was
found in several examples, see (14). So, although no theoretical result is presented, the
presented formulation is believed not to suffer of any numerical pathology due to mesh- '

dependence.
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Figure 9: Force x Displacement curves for dilferent meshes,
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Precision and Stability of the Proposed Algorithm

The performance of the proposed algorithm is explored in a problem of a rectangular

clamped plate, see figure 10, with a prescribed displacement U(t) = Ot (u (x=L,y)=ox ¢

uy(x =L,y)=0) at the end x = L, plane strain state and the following boundary conditions:

B _8_[3=0 inx=0ex=1.,

ox
Y
u

I—)
T
L/2
1

— L f X
Lo

Figure 10: Reclangular plate with prescribed displacement, uW(t).

The following values were considered: o =50x% 10" mm/ s, L = 20.0mm, E = 50.0GPa,
v=02,w=0.025MPa, D, =1.0, C = 0.IMPa.s and k = 0. MPa.mm? .

A mesh of 289 nodal points and 256 elements was used to solve the problem, see figure 11,
The dashed line defines the longitudinal line at the central region of the plane, where are the

analyzed nodal points (137 up to 153).

-
b
B
= =
2
137 138 139 151 152 153

Figure 11: Finite element mesh.
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The backward Euler method was adopted to solve the damage evolution problem. The
analysis shows that a reasonable time step is 0.001s for this kind of mesh.

* The precision analysis of the proposed algorithm cénsists of comparing the results obtained
using the operator split methods with different numerical integration methods (forward and
backward Buler and trapezoidal rule) and the results of a coupled solution strategy, where
the Euler and Newton Methods are used together.

The figure 12 presents the results obtained using the different numerical methods at the

instantt=5.5s.

B=1-D
0.68 —
3 —% Impl. Buler
0.64
E —@— Expl. Euler
06-05 —>—  Trapez. Rule
) E —fFF— Coupled Sol.
0.56
0.52
3
0.48 -llll|ll|||llllTllFIllll'IIIIIII\\IIII‘T'IIII!liII
136 140 144 148 152 156
POSITION {node num.)

Figure 12: Different numerical methods, t=5.5s.

It is possible to observe that the results are quite similar using the different
algorithms. Then, the results presented in this section denote that the Operator Split Method
was able to give results with the same precision order than the other methods that solve the
coupled problem. It is worthwhile to emphasize that the last one have a more expensive

computational cost.
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Conclusion

A simple numerical nethod was used to approximate the solution of the resulting
nonlinear mathematical problem without the necessity of a radical modification of a
ordinary finite element code. This simple numerical method is formed by the combination
of MEF and operator split technique, that transform the global nonlinear problem in a
sequence of linear problems, Besides, the proposed numerical method have good stability

and precision.
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