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Abstract. Exact solution for an interface crack with contact zone is analyzed. Oscillating and contact
zone models has been obtained from this solution and procedure of transition from one model to
another is demonsirated. Particularly relationship between real contaci zone length and the length of
crack faces overlapping zone is obtained. Energy release rate (ERR) for both models is given in the
simple analytical form and slight difference between them for any contact zone length is found out.
Quasi-invariance of ERR for any load and malerial properties is proved and simple way of ERR
numerical determination is suggested.

Notation

Oy, Gy, G,, components of stress state
u, v displacement components
b-¢c crack length

b-a contact zone length

ki, k stress intensity factors
Introduction

For composite materials interfacial and intergranular fracture are common and
determine mainly the material’s overall strength properties. That is why much attention has
been devoted to interface crack problem, Starting from fundamental papers by Williams [1],
Cherepanov [2], England [3], Erdogan [4], Rice and Sih [5] oscillating interface crack
model has been initiated. This model was essentially developed in the recent works by
Hutchinson et al.[6], Rice [7] and applied for numerical analysis by Tan and Gao [8], Yuuki
and Cho [9], Raveendra and Banerjee [10). Elastic-plastic material behavior at the

interface crack tip has been taken into account by Shih and Asaro [11,12].
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Contact model of interface crack was initially invented and investigated
numerically by Comninou [13-15], Dundurs and Comninou [16]. Analytical treatment of
this approach was made by Akinson [17], Simonov [18], Gautesen and Dundurs [19,20],
Loboda [21] and with taking info account friction in conlact area by Antipov [22].

In spite of great number of essentlial results on the problem in question some
peculiarities of an interface crack deformation are not defined sufficiently. They are
connected first of all with physically unreal crack faces inpenetration for oscillating model
and its unaccessibility in the case of essential shear field. Undetermined still are the
prospects of contact model application for nemerical analysis.

In the paper [21] due to original approach to the contact model derivation useful
quasi-invariant has been found. It gave possibility to simplify the contact model application
for numerical interface crack problem solution. But the method and results of this paper
can be used for demonstration of relationships of oscillating and contact model solutions
and for assessment of the frames of each model applicability. With these problems the main

aim of the paper is connected.

Contact zone solution for a crack between two dissimilar half-planes

An interface crack in dissimilar materials as shown. in Fig.1 is considered. We

assume G ;’,0’ >0 o, satisfy the continuity conditions {5], and crack surfaces are traction

free for x € {a,b) = L, ,and are in frictionless contact for x € (¢,b) = L,. Position of

the point a is arbitrary for a time. Without loss of generalily, we can take

W + Lk
=215
v W, + Ik,

and T < 0. In this case the longer contact zone will arise at the right crack tip and thal is

why only this zone we shall take into account. It is clear that oscillating singularity at the

left crack tip will not influence to the stress -strain field at the right crack tip.
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Fig.1. Aninterface crac with frictionless contact zone (a,b)

By using the method described in [21] the following formulas for stresses and displacement

derivatives needed is subsequent analysis have been found {see for details in [21])

xeL: o,= e _};()'a_x) [i:; cosh ¢,(x)+sinh ¢0(x)] +
Q(x) -y .
oo [coshq)o(x)+ Tty sinh %(x)]; (1)

_ Q(x)cosp(x)  P(x)sind(x) .
¥ \/(x—c)(x-a) J(x—c)(x—b)

x>b 6).—1'1

. i[ P(x)cost(x) Q(x)sind(x) ] ; @

JG=0G-b)  Ja-o)x—a)
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B kR, P(x)sing”(x) Q(x)cosd™(x)
xe L: 2ufv )= + N €))
R~ [J&—dw—x)-ﬂx—dw—xJ

where

Jb-a)(x—c)
Vb -)x—a) +fla—c)x=b)’ 1
e=-—Iny
(a~c)b-x) 2n

(b-clx-a)

Jo-a)x-c)
N -cla-x)+Jla-c)b-x)’

d(x)=2e In

0, (x) = 2e tan™

@ (x) = 2eln

f1=7"-71".

Polynomials P(x) and Q(x) were found from conditions at the infinity and can be
written in the form

P(x)=Cx+C,, Q(x)=Dx+D,,

D =ccosp+tsinf, C =tcosp—osinf

c+a c+b
D2=B|C|— 9 Dl! G =- 5 _BI‘DI

B=eln%, B, =ela-c)b—c)

G =0,,T=-1

parameter A=(b-a )/l describes- the relative contact zone length at the right crack tip.

Stress intensity factors (SIF)

k = I1_1)1{:[J}()1I2(J\: — a)O' (x0), &, = xl_l)mo1/2(x - b)‘c »(%0 @
due to the last formulas have the following form

K, =%0 b—c[«/l—k(cosﬂ +8sinP) + 2e(8 cosp —sinB)],

K, = —cll%[ﬁ cosf —sin —2e1— A (cosp +BsinB)],

490




T
where 6= 8‘_ and I=b-c is the crack length.

Obtained solution is valid for any values of parameter a from [c,b] . But this solution will

be physically correct if the following additional conditions are satisfied
G,(x,0) <0 for xe L, and [v(x,0))2 0 forx€ L, 5
(excluding zone of oscillation near left crack tip).To satisfy last tnequalities we take

K, =0 that leads to the following equation [21]

eInH—r=tan"'£+tan"l+mn, r=+1-A ®
1-r r 0

with respect to A . Analysis showed that for relations (5) validity we should take m=0 for

020 and m=1 for 6 <0. More over for a small root of (6) due to assumptions

l+r=2,tan""(2¢/r) = tan™ (2e) , the following asymptotic formulacan be applied

A = 4exp[— el(tan-' (2e) + mm + tan™" (alm

' 1
Taking into account that both tan_l(ﬁl) for 620 and T+ tanﬂ'[gj for 6 <0

are equal to % +tan™’ (—9) last formula can be reduced to

Ao = 4exp{[—tan' (2¢) - (y +n /2)]/ e}, 0
where Y = tan™' (—8) = tan™ (T /G,). The roots of (6) obtained numerically and

their asymptotic values A_o for Y =3 and various 8 are given in the Table 1

It is clear from the Tables 1,2 that with good accuracy asymptotic formula (7) can be used
for Ag determination in the range of A9 <0.01. It should be noted as well that results of Aq
determination are in good agreement with correspondent results of the papers [20] (for

example for ¥=3 and 8—ee their value rounded to 3 digits is 0.329).
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Table 1. Exact and asymptotic values of contact zone lenght for y=3 and various shear fields

3 A A
0 0.7327%10™ 0.7327*10*
1 0.6503*102 0.6542%102
2.5 0.6072%10™ 0.6629*10"
5 0.1502 0.1889
10 0.2285 0.3303
100 0.3182 0.5516
— o0 0.3291 0.5841

and for y=1.8 they are given in the table 2.

Table 2.Exact and asymptotic values of coniact zone length for ¥=1.8 and various shear fields

3 Ay fo

0 0.2825*107 0.2825*107
1 0.1252%10° 0.1251*10™
2.5 0.9256*10 0.9482*10
5 0.6121*10" 0.6714*10"!
10 0.1498 0.1908
100 0.2937 0.4977

N 0.3123 0.5539

Contact zone and oscillating solution

It is important that the solutions (1)-(3) of the previous section remain applicable

for any contact zone length and even for a=b. Particularly for a=b and x>b 6,-it,, can be

written in the form
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o, —iT, = Tc;(x:b_)[Q(x) cos(x) — P(x)sind(x) +i{ P(x)cos(x) + X x) sintb(x))],

where

A(x) =(x—C—J2rb)(ocosB +Tsin )+ P, (-osin B +Tcosp),
P(x)= (x—-E;—b)(—o sinf3 +tcosB)—P, (0 cosP +TsinP).

Taking into account that

o A=) (x=a) +fla=)(x—b)
P00 =2eln \/(X—C(«/b—c+«/a—c)
x—b
X—c

for a=b we arrive [} —¢(x) = eln and

. | _c+b ) B ,
o, ~f,, = 00D ([(x 3 o 0o +T sinw) +e(b c)(—cssnm+1_msm)]+

+:[(x—‘c%b)(—csin0)+t 0cs) —e(b—c)(0 s+ Snw)]) @)

where

X
w=eln—.
x—c

In the similar way formula (3) for a=b can be reduced to the form

\ M, +ku, 1 c+b . .
2L [V']=—- [(x—~ )G cosmw +Tsinm )+
| Hofy Jx—o)@-x) 2 ©
e(b—c)(—osin®” +1 cosw )]

where " =eln . Formulas (8),(9) present well known oscillating solution for

X—=C
interface crack. Particularly for c=-b formulas (8),(9) coincide with the previously reported
formulas of [11].
Due to applicability of solution (1)-(3) both for contact (A=Ag ) and oscillating (A=0)
models we'll use this solution now for demonstration of the process of these models

derivation.
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In the Fig.2 the values of ©,,(x,0)/c for xeL,, k=2.8, 1=0, b= -c=1 and for various values
of A are shown. It is clear from these results that for 2A=10" longer part of contact zone
(=0.7(b-a)) arc in tension. Decreasing of A leads to the relative length of compressed zone
increasing (for 2A=10" approximately 0.9(b-a) are compressed). For any A<Ay we have G,

{a,0)=0. Fig. 3 and 4 illustrate the procedure jf the second inequality of (5} satisfaction.

G,
YA
(8
B 2 A=10
20 L
4] | 1 1 1 >
1 (x-a)(b-a)
208
10°*
40 '_2?» =2).0 ~ 0.744*10

Fig.2. Normal stress in the confact zone for various its lenghts.

Particularly in the Fig.3 the diagrams of
[v(3)] =[v(x0)]/ (G
Ip Z\F

in the left neighborhood of the right crack tip are given for various A and k=2.8,1=0, b=-
c=1. One can clearly see that for A2, (for 2A=3*10" ,2*#10*,10™) crack is opened and the
second inequality of (5) is valid. Particularly for A>Aq [ V/(x)]—ee when x—a-0, but for

A=Ao the jump of [ v/(a)]=0. Next for A<, overlapping of crack tips appears and
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decreasing of A leads to the increasing of overlapping zone length and its amplitude.
Finally dashed line corresponds to the classical (oscillating) solution (9). Similar effects

can be seen from the Fig.4 where diagrams of

[v(x)] = [v(x())]/[ﬁ/c +12 p‘l u'Zkl
T

for various A,k=2.8, 8=2, and b= -c=1 are displayed. In this case Ag=0.0351 e.i. contact
macro zone arises. Crack faces overlapping amplitude in this case is more essential than in
Fig.3 and they are not negligible small in this case with respect to max[v(x,0)] in [c.a}. It
can be explicitly seen from the Fig.2-4 that both inequalities (5) are satisfied only for A=Aq.

It is interesting to note that crack faces overlapping zones are larger than real contacl
zone length. This difference is the largest for pure oscillating solutions (dashed lines). In
this case analytical relationship between asymptotic contact zone length Agl and crack

faces overlapping zone length

P

0.6*10° =21~0.744*10*

0.4*107

02107231

0.0

-0.210°1

Fig. 3. Displacement jump at x<a for pure tension field and various contact zone lenghts
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re=lexp[-(y+1/2)/e] (1)
obtained by Rice [7] is following

Ao I=dexpl-tan™ (2¢)]r,~de’r.~0.5413r,. (11)
But for large contact zone length according to Table 2 and Fig.4 their difference is more

essential, because Agis usually less than Aq.

W A

2.=0.0125

0.05

<005}

0.1

Fig. 4. Displacement jump at x<a for pure tension-shear field and various contact zone Ienghts.

The energy release rates for contact zone and oscillatory models

For the crack shown in Fig.1 the ERR can be computed as the virtual work integral

atAf h+Ah
. 1
G = ~ | 6, (X)Vv(x+ADdx+— |G a(x+ADdx|, 12

l}gl[zm J S, (¥ (x+ A+ {G*y(x)“(x ydx i (2

where o, (x)=0y(x,0} for x—a+0,
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V(x)=v(x,0) for x—a-0,
_()'xy(x)=0'xy(x,o) for x—b+0,
u(x)=u(x,0) for x—b-0.
Using asymptotic expressions for stress and displacement derivative fields near singular

points z=a+io and z=b+io {2[]the following formulas has been found
- K k +1
G, (x) = ———, V(x)=——2a-9K,,
J2(x—a) 4p,

s K I (e 0 L ()
o-.\y(x)_m! H(X)-— Zul(l_i_,y) Kz-

Substitution of the last formulas into (12) and evaluation of integrals leads to the

following result

T
GA)= M

1 (0K} + K7), (13)

where

(L + 170 ) (1, + k)
o=(y+ 1)%(4Y), q= ,
Wik, (R + 1 + Bk + k)

which is the same as J(A) in [21].
By using of expressions (4) for SIF K, and K, the formula (13) can be presented in the

form
G(')L):TZTCI(l+4ez)l(0'2 +72 — Ao cosP +1sinB)?). (14)
Taking into account that for A=A,
tanp, = %,ro =J1-4 (15)

after trigonometric simplification we arrive
2
.. ®g ., Tq sir 9 2 de”A,
Gh)=—"Ky =—(1+4e’)(c” +1°)| | -——F | 16)
where Ky is the value of Ky for A=A. It worth to note that values of Ky were previously
obtained in numerical manner in [15] and analytically but in more complicated form in [20].

Comparison of
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X 2 4 28 2
Kool (1051} =, [(1+ de )(1+%}(1—ﬁ) a7

with previously reported results [20] showed that for y=3 these values in [20] are 1.032,
1.071 and 1.138 for o/t=0, 0.2, 0.4 respectively, whereas formula (17) gives 1.0317,
1.0703 and 1.1369. Expression (16) is the ERR for contact zone model in terms of remote
traction-shear field.

Now we consider ERR for oscillating model. Using for this purpose formula

le'i'Qz2 l_\"l l_\'z
ox = 2 +
4cosh”(me)| I,

from [11] and taking into account that

Q, +iQ, =[{c - 2te) +i(1 + 20e)|Vrl/ 2,

we obtain

G =%’(1+4e2)l(02 +17). : (18)

oy

It is clear that G could be found by assuming Ag=0 in (16), i.e. Go.=G(0).
It worth to compare the values of ERR obtained by using two models. Relative difference
between these values can bedetermined by

G, —G(h)  4e’)
G,  l+4e -\

24y

oG = (19)

For only tension field (1=0, A=0(10*) the value}3G| is negligible small of order
10°® for any material combinations. But it is interesting that this difference is rather
small even for essential contact zone length, For example for extrimal situation of 8—ee
and y=3 we have: Ay=0.3291, e= 0.1748 and consequently 8G=0.0507. It means that even
in this case the difference in ERR determination by using two models is not very essenlial.
Since for practically real material combinations the values e< 0.1 (Rice [5]), 8G is
extremely small for any 8 and both contact zone model and oscillating model can be used
for ERR determination.

Oscillating model in spite of ils simplicity is not explicitly convenient for

numerical fracture parameters determination due to complex behavior of stresses and
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displacement at the crack tip. On the other hand contact model utilization in its
conventional form requires Ag definition and only after that Kz or G(Ag )determination.
This way leads to the complex nonlinear problem which can not be easily solved for a
finite size body containing an interface crack. Essential simplification of this procedure
can be attained by using quasi-invariance of ERR G(A) with respect io A [21]. According to
(14)

SGOL) = G(A) - G(Ay) My (o cosP, +Tsinp,)? —A(c cosp +1 sinf3)?
()= G(A,) 6% +1% =Xy (0 cosP, +1sinf, )2

Using Teylor’s series for (ocosB+rtsinB)’ at the point A, and taking into account that due to

(15)
o cosfy +1sinf, = 2e0y1+87
o a—‘/ﬁa
-2, +4e
np 5 o fl-A V14862
—osinf, +tcosf, =~ \/‘
[— 2, +4e?

I-2), +4e’
Ao(l-2) (1+4e%)

(we notice that coefficient at the (A-Aq )is equal to zero).

(20)

we arrive

SG(L) = e =2)" +p -1, [ @

For small Xy (Ag<A<<1) formula (21) is not convenient. In this case directly from (20)

due to obvious inequality (ccosP+tsinB)? <o2+1* we obtain

A A +4e? A

<_ _ <
R BN TR Wi W
It follows from (21),(22} that
OQA), for small A, <\ <<1,
ISG(JL)I = 23)

O[(l - Aﬂ)z], Jor remaining A,

Formula (23) declare the quasi-invariance of G(A) in some vicinity [A—Ag|<e of Aq.
This phenomena eliminate necessity in precise Ag definition for G(A) determination,but

permit to find G(A) for any A from & -vicinity of Ag. After that assuming G(Ag)=G(A)
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we’ll make error (mistake) of order g2 (¢ for small ). For the most practically important
weak shear field (small Ag) we may directly take A=0,01.In this case the error in G(Ag)
determination by means of G(A) calculation will not exceed [% . For essential value of
A¢2 0.02 the needed e-vicinity can be found by means of iterative solution of problem in

question for A#kg with control of value K.
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