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ABSTRACT: The aim of this paper is to propose damage accumulaiion and fracture condition with
the associated compliance variation description. The damage distribution within the representative
element is specified on each physical plane by a scalar or vector value. The elastic compliance
variation due to damage can be neglected when multiaxial fatigue problems are considered.
However, this variation can be determined by introducing interfacial strain components due fo
damage and averaging over all plane orientations within the element,

A simple model is presented by assuming tension and shear fatigue modes on each plane specified
in terms of tractions componenis and the respective failure function. To provide uniform treatment
of crack initiation and propagation from stress concentrations, the non-local stress and energy
condition was proposed and applied o predict both critical load value for crack initiation and also
crack orientation. This simple model was next extended to predict damage accumulation and fatigue
crack initiation under multiaxial cyclic loading. It is assumed that the failure function can be used
in predicting damage on each physical plane by following the evolution rule associated with this
Junction. The strength and compliance variation depend on damage accumulated on each physical
plane.

Introduction

The problem of simulation of progressive damage and fracture of structural elements is of
fundamental importance in assessing the operation life and reliability of elements. For
multiaxial variable loading, both crack initiation and propagation are affected by the
loading history and non-proportionality inducing varying traction components on each
physical plane. Whereas for high-cycle fatigue problems the effect of compliance variation

due to damage accumulation can be neglected, for low cycle fatigue problems, the effect of
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both plasticity and damage should be accounted for in the analysis of local stress and
strain distribution.

The complete formulation of problem should contain constitutive equations with elastic
compliance moduli dependent on damage state, the rule of damage evolution, and the
condition of damage localisation along critical planes with subsequent macrocrack
initiation and propagation. There are numerous damage models employing scalar, vector
or tensor damage variables, ¢f. monographs [1,2]. However, for modelling the fatigue
damage accumulation, it can be assumed that the strength paramelers are affected by
damage but the compliance moduli are constant. Hence, the linear elastic analysis can be
used in predicting crﬁck initiation and the linear fracture mechantcs can be applied in
predicting crack initiation and the linear fracture mechanics can be applied in predicting
crack propagation. Such simplified formulation can essentially facilitate the solution of
problems of service life prediction of machine or structural elements,

Figure 1 presents the calculation scheme of a structural element using damage or fracture

mechanics concepts.
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Fig. 1. Calculation scheme of failure of an element
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It is seen that depending on the type of problem and material different approaches can be
applied. However, in each case the crack initiation and propagation condition should be
formulated in terms of local stress variation and the direction of propagation should be
predicted. The effect of accumulated damage on crack initiation and propagation should be
accounted for, so the theoretical model could be applied for both proportional and non-
proportional loading histories. In most damage mechanics descriptions the damage is
quantified by a state variable represented by scalar or tensor variable referred to a
representative volume element. However, the other approach is possible where the damage
is specified on each physical plane in terms of traction of strain components related to this
plane. In this case the directional damage distribution is obtained and the conditions of
crack initiation are related to the critical plane with the highest damage density. The
present work is concerned with the local and non-local formulation of crack initiation and
propagation conditions with the associated damage distribution, starting from the concept
of a surface distribution of damage and its effect on material properties. The present work

complements and extends the previous papers on this topic [2-10].

Non-local failure criteria

Non local elaslicity, plasticity, or damage formulations have been recently proposed in
literature. The yield or damage condition at a material element depends on the stress
distribution in the neighbourhood of this element, cf. [11,12]. Alternatively, stress or
strain gradients are assumeéd to affect the yield or damage condition, cf. [13].

In crack propagation problems, the non-local criteria have been formulated by averaging
the normal stresses on the physical plane near the crack edge over a specified area, cf,
[14,15], or by analysing stress and strain states at a specified distance from the crack tip,
cf. [16,17]. The non-local approach is related to the cohesive crack models initiated by
Barenblatt [18] and Dugdale [19] and next extended by numerous researchers, cf. [20-23].
In the process zone ahead of the crack tip the nonnal tractions are related fo the
displacement discontinuity and the softening response terminates by crack opening. This
model provides a new dimensions, the length of the process zone which could be

compared with the averaging length in the non-local model.
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In the present work two non-local criteria of brittle failure are considered. First, it is
assumed that the failure process is specified on the critical plane by averaging the failure
function over a specified area. The orientation of the critical plane is also specified by
maximising the non-local condition with respect to orientation. Allernatively, the non-
local energy release condition is associated with the crack propagation over a specificd
distance. These conditions were next applied to the analysis of crack initiation from
notches or crack propagation in the multiaxial stress field with account for both singular

and regular stress states occurring in asymptotic expansion near the crack tip.
Non-local stress failure condition

Consider an arbitrary physical plane 4 and the local coordinate system (&3,£,43), Fig. 2.
In the global coordinate system (x;,%;,x3), the origin of the local system is specified by the
position vector xo(¥oi,¥02,%03), and the orientation of the plane 4 is specified by the normal
vector n{my ,m2,m), where n; = cos(&3,x;).

The traction vector £ = o n and resultant
shear stress 7, on the plane A is expressed

in the local system as follows
Z;' (fn] ,fnz,o'") = Nl:l-o-jknk ,
112
el v’ @

where g is the stress tensor and the matrix

Ny = cos(&;, x;) specifies the transforma-

tion to the local system. The shear

Fig. 2. Physical plane A4 with the . '
associated local coordinate system traclions 7, and 7, are oriented along the
(E1.8,,83), and the global reference

system (xp,x2,X3). axes & and &.

Assume the crack initiation and
propagation process to depend on the traction components on the physical plane. The local

failure condition is assumed in the form

R = m}?a(aﬂ 16,,t017.)=1, @)
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that is expressed in the terms of traction components. Here o, 7. denote the rupture
stresses in tension and shear. The critical plane is determined by maximising function R,
with respect to the position x, and plane orientation n, Depending the inaterial, the local
failure function R, may be expressed in the different form, For instance, Seweryn and
Mréz [6] assumed this function as follows

Op Ta
= 4= , 0,20
a, 1, o, T,
n(33)-
[

3)

to, langa), a, <0,

1
e

that is elliptic condition for o, > 0
and Coulomb condition for o, < 0,
For singular or quasi-singular
stress regimes in the front of cracks,
sharp notches, or interfaces, the

stress function Ro(o/o, 1,/7) s

averaged over the area d,xd,,
Fig. 1. The non-local stress failure

condition has the form, cf. [6]

Ry =61nﬁ}_fc(o‘" /o,,1, /rc) =
1

dgdy
Fig. 3. The failure siress function: elliptic =(“f’{?'fj I Rcdfld'ﬁszl-
condition for normal tensile stress combined Mo 70 00
with the Coulomb condition for compressive @
normal stress where R is now a non-local failure

stress function. The non-locality parameter d, can be specified for a brittle material by
identifying the Griffith-Irwin condition for a plane crack under remote tension, thus
obtaining the relation, cf, [3)
2
dy = Z(ﬁ) . )
n\ o,

However, dy can be specified from experiments for a combined mode fracture,
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Consider, for instant a plane problem of crack initiation from notch, Fig. 4. Using the
local coordinate system (r,9) with the origin located at xo(¥ayo), the non-local failure
condition is expressed as follows

dy
= [ Tgs % 1 Gy Trg
Ry, = R( s )= —R(—,-—dr=1. 6
o = ke 5] = dof S ©)

0

The rupture stresses o; and 7, are assumed to depend a
\ temperature 7, and the damage state @,q On the physical

plane 4, thus

O, = dc(n)wno) = aco(ToXl_ wm)ps
L =Tc(1;aa)no) = fco(ToXl_wm)Pn

where ., and 7. are the rupiure stress values not

Q)

affected by the accumulated on the physicai plane, and p

is the material parameter.

The damage stale variable @,q on the physical plane is

thus explicitly related to the rupture stress

Fig. 4. The non-local

damage zone emanating o Vp r Vp
from the notch root. w,,c,=l—[ °) =1—( c) ’ &)

o-cu fco

where it is assumed that the effect of damage on the reduction of o, and 7 is the same.
The accumulated damage rule should be formulated to provide the complete model
formulation. In general, the total damage accumulation will be dependent on plastic or

viscous strain and chemical factors (¢.g. corrosion), so we can write

‘QK! =wnc +d)0(mnp:wmnwrh): (9)
where @y, @, and o, are the accumulated damage portions due to plastic and viscous

strain, and chemical processes. The function @, provides the total damage measure due to

irreversible processes. Now, the expression (7) is replaced by the formula

o ot 1-2)" 7 =ra(B)1- )" (10)
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The experimental results for notched specimens under combined tension and shear
provided good agreement with theoretical predictions of limit load values and crack

oricntations obtained from non-local stress brittle failure criterion, cf. Seweryn et al. [10].

Non-local energy condition of brittle failure

The non-local energy criterion is based on the concept that the crack must be generated
over a characteristic length d,. The energy releasc is then specified not for an infinitesimal
crack growth, but for the initiation over the length d,, cf. [4).

Consider the initiation process from the notch root, Fig. 5.
The averaged energy release rate due to crack opening

mode equals

dl
GC,(S):—;—_[U”(:',&) fy(r=d, -7 =n)ar. (a1
¢

The averaged energy release rate duc to shear mode is

expressed similarly

Fig. 5. Crack initia-

tlon over the distance 1 dy
d. from a notch root. G, (.9)=_d—_[fr3 (,-, ,9) m
Polar coordinate sys- e

tems (7, 9) and (F,Q_).

(r=d,-F,T =n)ar, (12)

where u,, g are the displacement discontinuities at the

crack tip. The crack initiation and propagation occurs when, cf. [4)

;= m!‘;(GU,G,) -1, (13)
The non-local energy condition for the combined mode fracture can be assumed in the
form
R[ﬂ,ﬂ} Oa 4 Gr (14)
GUG G‘[c GCIC Gtc

where G, and G, are the critical values of energy release rate in tension and shear. These
values can again be assumed to depend on temperature and the accumulated damage on
the physical plane.
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The energy release rate for a finite length crack (much larger than d) in Mode I equals

2

K
e = s:u (x+1), (15)
3-v)/(1+v) forpl tress state,
IP where & = v)/{(1+v) forplanes .ssae
o 3-4v for plane strain state.

The averaging length can be determined by considering the

o A edge crack of length d,. The stress intensily factor now
equals

K, =112 gy = 0} Jnd,. (16)
l P and the energy release rate is equal to
o
k+1 2
Fig. 6. A plate with Goe 0,264 =0 d,. (17)

the inclined crack
From (15) and (17) it follows that

2
d, = 0,474(—K£J . (18)

JC
The formula (18) is similar to (5) specifying the averaging length in the non-local stress

failure condition.
The effect of non-singular terms on crack propagation

Let us include the non-singular terms in the asymptotic stress representation near the

crack tip. We have, cf. [24]

- -K(S 2 33) K(s'E 3'3.9) +T,cos” 9
U”—dﬁ;- i 0032 —‘0052 — hgp sz 51[12 acos >
[ ( 9 3 ) ( g .13 ) 4
= = ~gl- = -~ 19
Tsa 4J2_1:;_KI 3cos2+00523 3Ky sm2+35m2.9 + 7T, sin” 8, 19)
L [.(.8 .3 3 3 :
7,8 =TJ_ZTT_KI sm?+sm-5:.9 + Ky cos-2-+3c035.9 - T,sinJcosd.

where », & are the polar coordinates with the origin at the crack tip.
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Fig. 7. The effect of non-singular stress
Ts on the crack propagatlon direction for
an inclined central crack. The prediction
was obtained from a non-local stress
condition (4) for o/ = 0. Experimental
data from [24]
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Fig. 8. The effect of non-singular stress
T on critical values of stress intensity
factors for central crackk The predic-
tion was cbtained from a non-local
stress condition (4) for o/t = 0.

Consider now a wide plate with the
central crack of length 2¢ inclined at the
angle = — £, to the tensile stress direction,
Fig. 6. Now the values of X;, Ky and 7,

arc

K =p, Vna cos® Bs
Ky = p,Ymasing, cosf,,
Iy =-p, 00520, ,

(20)

where p, denotes the remote tensile
stress. Experimental dala related to crack
propagation in a plate with an inclined
central crack [24,25], indicate that the
minimal value of critical loading occurs
for B, = 20 +30°. When g8, — 90°, then
K1 — 0 and X — 0, moreover KyKy — 0
which indicates the shear mode and the
propagation angle 9, = —80° + —70°,
However, the experimental data indicate
that this angle equals —90° which is in
agreement with the classical normal stress
condition (tension along the crack line).
Figure 7 presents the predicted depen-
dence of crack propagation direction % on
the inclination angle g, for o/7. = 0 and
different length of the averaging zone d,.
When dy — 0, the effect of T, is neghli-
gible. Let us note that when G, = 90°,

do # 0 and o/7, = 0, the crack propagation

direction follows the line &, = —90°. The critical stress values are finite and reach

minimum for g, = 20 + 30°,
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Fig. 9. The effect of non-singular stress
T, on the crack propagation direction
for an inclined central crack, The pre-
diction was obtained from the non-local
energy condition (13) for GodGi = 1.
Experimental data from [24]

local stress failure condition, Fig. 7.

- For the plate with an inclined crack, the

effect of T,-stress is quite significant,
especially for the inclination angle ¢lose to
-90°. the
JKyYKy, Ko/Kp) = 1 cannot be accurately
specified. Figure 8 presents such diagram

Hence, limit diagram

obtained from the non-local stress
condition for different values of dp/a. It is
seen that the effect of 7,-stress becomes
predominant when Mode I prevails.

Figure 9 presents the predicted crack
growth orientation obtained from the non-
local energy condition for G,J/G,, = 1.
The prediction can be compared with the

experimental data and also with the non-

Damage accumulation for varying multiaxial stress state

Stress damage accumulation rule for high-cycle fatigue

Consider a variable loading programme within macroscopically elastic domain of

response. Assume the damage growth on the physical plane A to depend on traction

compoenents and the damage state, so that

d0pq = der,gZ,d2, 2, ).

21

It is assumed that the damage accumulation occurs for stress paths lying outside of the

domain of no damage accumulation. This domain is specified by the condition

Reo = R (ﬁ&) 1
foo_m ‘go Ja,fo <l
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Here o, and 7, correspond to fatigue limit stresses in pure tension and shear. The shapes of
the damage initiation surface Ry, = 1 and of the failure surface R (o, /o, 1,/7.) = 1 are
assumed to be the same.

The failure stresses o, 7. are now replaced by fatigue limit stress o, 7., where o, < o, and
7 < 7. The fatigue damage accumulation occurs when the fatigue initiation stress function
Rso(0n /a3, T./7,) 0N any physical plane A exceeds the critical value 1, thus

o, T
Rego = (“3 Ruo[?"""'"') >1,

nxg [} ro
where Ry, is the fatigue damage initiation factor.
Consider now the fatigue damage accumulation domain £ in the plane (,,7,) bounded by
the curves Ry, = 1 and R, = 1 corresponding to damage iniliation and failure, Fig. 3. The
damage accumulation occurs when the stress trajectory traverses the domain £ Introduce

the non<Jimensicnal function

Rgy, =R /Ry, (23)

goc

and express the damage increment by (he relation
dw,, = ¥, (R, )dR,, 24
where ¥, (R,) is the damage accumnulation function and dﬁ’a is expressed as follows

;- {dRU for dR, >0 and Ry, >1 25

0 for dR; <0 or R, <1’
where

R o R 7,] OR aR aR
dr, = —“d(—") +—°d[—"] =—2do, +—>dr, + ——dR,, (26)
° 0(0',, / o',_.) G, 6(7,, / 'rc) T oo, " O, 03,

and the last term accounts for the effect of accumulated damage on function R, The

damage growth occurs for the stress path penetrating in the exterior of the domain
bounded by the curve R, = const., Fig. 3. Alternatively, the loading - unloading conditions

can be specified as follows
di, = Lo s Ko gr (Ho yr  Re i 27
o = 60',, On +Br,,, Ty + arﬂ T + agn na 1 ( )
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where the increment of traction stresses da,,dr,; (i = 1, 2) are given by the relation

dé, =do, for do,20 and o, 20,

o 28
do, =0 for do, <0 or o, <0, (28a)
and

dz,; =dr,, for 7,dr, 20,

dr, =0 for r,dr, <0 (28b)

In the traction plane (a;, 7)), the combined damage growth domain, shear damage domain,
tension damage domain and unloading domain are specified by (27) - (28).

For large stress gradients a non-local increment of damage stress function can be applied,
thus

A

ak, ;,-I-I J R, dgas,. @9
00

The damage accumulation function ¥,(R,) was assumed by Seweryn and Mréz [5-9] in

the form

Rcr _RoocJ 1
%(Ro) - AU( l_Rcoc l"Rooc L (30)

where n, and 4, are the materiat parameters,

‘o The present model was applied to
predict the number of cycles
corresponding to crack iniliation. For
o the tensile cyclic loading test between
o= Oy = 0 and o= ap,.,, the following

equation results
Tmax ~ %o
log Ny ={n, +1) 1og(—m] (31)

Figure 10 presents the fatigue initiation

0.4

0.2
0 2 4 6 8 10
loghy . TN .

curves and their sensitivity with respect

Fig. 10. Dependence of the maximal stress L
on number of cycles Ny at the crack to the exponent 1, occurring in (30).

initiation The model can also be applied for the

360




stage of crack growth. For a tensile crack growth, the following growth rule was derived
by Seweryn and Mrbz [7]

E__ (Kmax_th
d.N_' Kc_Ku‘

b d 2 01130k

1/C da/dN
]

00 02 04 06
Krnae/ Ke

Fig. 11. Dependence of fatigue crack growth on
the maximal value of stress intensity factors

specified from the equation (32)

experimental data,

10 4o e

g+l
Krn'm —Kﬂl]n ’ (32)
Kc _th '

where C and n, are material
constant, K., Ko are the
maximal and minimal values of the
stress intensity factors in each cycle
and Ky, is the threshold value of X
When K . <K, then we set

Kouin =Ky - Let us note that the

crack growth rule has a similar
form to some previously formulated
rules of fau'gue‘crack growth, such
as those proposed by Paris and
Erdogan [26], Donahue et al. [27],
Klesnil and Lukas [28], Cooke and

Beevers [29] who available

Experimental verification of non-local fatigue crack initiation condition for notched speci-

mens under biaxial cyclic loading was presented in the paper by Molski and Seweryn [31].

Damage accumulation rule for low cycle jatigue

When macroscopic plastic deformations occur, the associated damage accumulation on the

physical plane A4 can be related to the plastic strain components &, and y,, where &, is the

normal strain and y, is the shear strain. The growth of plastic damage @,, can be

expressed similarly to (24), namely
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do,, =dw"p(§,d§".wm,a),,p). (33)

where E = [&,, 5", dBP = [d&P ,d¥ P I". The ductile damage function Ry = R(ee, ylr)

specifies the initiation of ductile failure, thus
Ry = Re, te,y,ly.)=1. 34
fp (h'm.’:j p( (174 ) (34)

Maximising function R, with respect to n and x,, both orientation and location of ductile
crack can be specified.

For monoltonic loading we have
En =8, tER, Y =Fatrl,

and for variable loading, the equivalent plastic strain £° , #° can be used, thus
R Rt 35)

where &7, ¥P are specified for cach strain reversal, thus

gPdt  for £PEP 20
Hn-n (36)
0 for &Pl <0
and analogously 77 .

Similarly as for stress damage, the crilical strain values & and y are functions of
temperature T, and accumulated damage, thus
& = Ec(To’wnU!wnp:wmuwnh)' Ye =70(Tolwncnwnpsmm!wrh)
and the specific forms are similar to (7):
P F

5 =to{l-2) . re=ra(1-2,). 37

where (2, is the equivalent damage on the physical plane
2, =0, +¢P(wm,ww,w,,h). {38)

The growth rule of w,, is expressed as follows
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da,, = Y;,(Rp)dRp, (39}
where the strain damage accumulation function ¥} takes the form
¥ (R, )= 4,17 (40)

and np, A, are the material constants. Similarly as previously, the increment dﬁp is

specified in terms of plastic strain and damage increments

oR, . R, . R, "
p = YT dg +'a?:—dy,, +6.Q,,p ds2,,. 41)

More complex macroplastic damage accumulation condition could be formulated by
following the multisurface plasticity hardening rules proposed by Mréz [32,33].

Consider, for example, the case of unjaxial tension of a cylindrical specimen. The
deformation process .can be divided into three stages. In the first stage the elastic
deformation occurs and the associated damage w,, develops. In the second stage both
Plastic and stress damage components develop. In the third stage, the strain localisation
may occur with the localised damage growth inducing ductile rupture. Figure 12 presents

the damage evolution and variation of stress and strain,

a) b)
s 1.0 4 l-r-':r.r::r.-.-—'iﬁi';:;:::""“"““""'" A 1.0 pmcwern =g
@ N“:.g‘/acn 3
§ R §
3 08 4 \ 3 0.8
LY
R 3 .
§ CWZNY N |
\&‘ 0.6 } 0.6
. /v ~
8 8
\':I\ W)
W 0.4 - > 044
& , e
2 02 - oy 1@ 02
\E‘B_ ___,__‘".M.---—‘__‘.--:',r“ Qs
0.0 f<arzars 1 s Y 0.0 : y
° "ob 02 0% 05 0B 16 ° TT00 02 0% 05 08 1.0
L/t t/t

Fig. 12. The Interaction of loading with the rupture stress and strain evolution due to
damage growth for a) brittle b} ductile failure
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For uniaxial fatigue problems, the accumulated plastic strains arc used in the damage

model equations. The plastic damage @, can be expressed in the form

"

@ = N(C) (Aa"' -(Ae‘)"‘): NG ((Aa‘ +Ae?) (Aa“)"‘), 42)

where Acg is the total strain amplitude and As®, A¢® are the elastic and plastic strain
amplitudes, m, is material constants (7= n, + 1), and Ci = (I depends on the
orientation of physical plane.

For high cycle fatigue, the plastic strain can be neglected and we have (for o, = 0):

Wpq = N(Cydo™ = N(Gyl4e°)”, @3
where Ao is the stress amplitude, 1, = ng + 1, C; =Cy(9), C3=C5(9.
For the intermediate case, the coupling process between @, and @,, occurs, so the

equivalent damage measurcs can be assumed as follows

$p = Dpp + (Dp(a’ml) = Wy + ApoBpo s

(44}
2, =, +¢°(w,,p)= W + Ay Oppy s

where A, and Aq, are the coupling terms.
The crack initiation can be expressed as follows

' max( o, 2p) =L (45)

Figure 13 presents the dependence

of strain amplitude on the number

of cycles N, at the crack initiation
22a A0 Oy
\‘

A (o) specified by the stress damage rule

STRAIN AMPUTUDE  Ac
o

A& (@,), plastic strain damage rule

A& (wnp) and by the combined rule
1 10 10 10' 0* 10°* 10°

NUMBER OF CYCLES N; A&({2n 'Q"p)

Fig. 13. The dependence of the strain The resemblance to the Manson -

amplliude on the number of cycles Ny Coffin model [32,33] is seen from
corresponding to crack initiation .
the diagram,
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Compliance of the damaged material

The effect of accumulated damage w, on the material compliance can be specified by
assuming the normal and shear strain components s,‘,' R y,‘,' due to damage to occur at each
physical plane (cf, Seweryn and Mréz [9]), so that

& =e(0,0,),  pd=yd (fnr,). (46)
Consider for simplicity, only the damage strain sf,l related the tensile stress in the form

&l =A (L) q(a,, ) 47

l-w,

where A4,, ¢ are the material paramelers and (o,)=0, for o,>0 and (o*,,) =0 for

0, 0. The related compliance variation is

o =An(lf’:0n]qﬂ(o-,,), (48)

where H(o,)={(c,)/a,.

The increment of damage strain is

a_08) . a8t o, \* . 90,0,
B = o On t Gy ”“‘(j') H{e) T onll-)) @)
n n n n\t T Wy,

Introduce the scalar ", and tensors CJ°,

Ciju» specified by the relations

¢ =[ciman, o= Caln)mn; d2, Gl = [ CE) mmmpn, a2, (50)
4n 4n 4qn

where the integration is performed for all plane orientations. The compliance variation
due to accumulated damage can now be expressed as follows (cf. Lubarda and Krajcinowic
[36,37])

g _315( .. 2 cs
Ciur T Cir "EAW +_2]“ff,fu ; (51)

where
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1 . . . . . R
A = 'g(‘sqcfr + 5HC5! + 6y C?f + 5.-;ka +6, cy + é‘j,C,.‘,“ )
: (52)
1
Lyy = 5(51;.'5&; + 00y +6yby )

For plane problems, we have respectively

ce = {ci9)ds, G = [Ci(S)nn; a9, Chy=[Ch(O) mnmen 48 (53)
in 2x in

and the compliance variation due to damage is

8 .0 6 c*
C';,i-k = ; Cl:f;f - ; Aﬁkf + '—20? ]ﬂ“ . (54)

Let us apply the present model to a tensile loading test. The stress damage function is
assumed to depend only on normal stress (o/7, —> 0). The increment dftc, on the physical

plane can be expressed by (he relation

dfé,,= (da,,) N p(a,,)dw,, . (55)

T, (l - w,,)P T (1 - w,,)PH

and the damage increment is given by

a) b)
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Fig. 14. Diagrams of stress-strain, damage, and critical stress evolution for two diffe-
rent sets of material parameters: a) f=04, p=1,g=1, 4, = 0,3, ny = 1, AuE, =105
b)f=02,p=25,4=2,A:=06, =1, AE, =50
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da, = , (56)
(1_% rlo,) J

i ac(l @,
where
¥ = 4 ((6"_0") " S22 B ot 67
et~ 4) v-r ST

The resulting stress-strain relation with progressing damage is

ekl

> , (58)

@ q
1+AnEo(l_;) H(o)
4]

o=

where E_ is the initial Young modulus.

Figure 14 presents (he damage evolution and stress-strain relation for two sets of materia]
parameters. Both stable and unstable responses are predicted by the model,

Concluding remarks

In the present paper, the damage was associated with the critical plane and the rules of
damage evolution on each physical plane were specified. The damage distribution on all
physical planes can thus be determined. The critical plane corresponds to maximal
damage value. The crack initjation. and propagation conditions follow from the critical
plane concept. Both regular and singular stress regimes can be treated by using the non-
local damage evolution rule proposed in the paper. When macroscopic plastic deformation
occurs, the damage is decomposed into stress and strain dependent damage components
@ne and @,,. They affect the Strength or critical strain parameters on the physical plane,
and also material compliance. The variation of material compliance can be specified if the

damage distribution on all physical planes is known.
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