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ABSTRACT: No satisfactory analytical solution of full elastic-plastic stress field has been found so
Jar for plane strain mode I crack. Only the finite-element analyses have been developed on this tapic.
Recently, we proposed an energy variational method 1o study the full elastic-plastic field of the mode
I crack under small-scale yielding conditions. Algebraic expression of the full stress field can be
obiained to connect the near-tip plastic field to the Jar elastic one.Full siress fields have been
obtained surrounding the crack tip for several types of specimens. The comparison with the results
obtained by the fine finite-element analysis shows that this method is highly accurate in the whole
region considered, whether for the near-tip field or for the far Sield. The algebraic expression of the
stress fields allows us 1o examine these fields in detail. The trajeciory lines of the principal stresses
(the cleavage lines) and those of maximum shear stresses (the slip lines) of several specimens have
been drown, In mode I plane strain, the maxinuum tensile siress is always along the crack plane, ail
cleavage lines near the crack tip go toward this direction and Jorm a cleavage band. This means that
the crack will progress in its own plane if the growth is created by cleavage. However, the maximum
shear stresses are oriented at diverse angles with respect te the crack plane according fo the
geometry and loading of the specimen, It is found that the slip lines go always toward a few
directions from the crack tip and form some slip line bands. The slip bands indicate clearly the
direction of the plastic flaw, i.e. the direction of crack growth by slipping. The crack propagation
depends on the competition beiween the maximum tensile stress af a critical distance Geglric ) along
the cleavage band and the shear stress af a critical distance Uryc) along the slip band. Going from
the expression of the full siress field this paper proposes a numerical method allowing to determine
the type of crack growth in elastic plastic medium.

Introduction

In elastic plastic medium the stress field near the crack tip can be determined by
local asymptotic analysis, such as HRR solution [11,[2]. This stress field seems to be non-
consistent when the strain field is large. This can be corrected by the use of a full analysis
including the far field. In large strain elastic plastic medium the failure presents a

computational aspect between two failure mechanisms.
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The first one, cleavage failure, is due to circonferential opening stresses Ggg {named
G in the paper) or to the energy release rate G (which can be presented as a J-integral) when

Ooe, G, ar J reach critical values o (at certain distance r, from the crack tip), G, or I, the

failure occurs.
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The second failure mechanism, slip failure, is due to very high local strains involving

failure following a slip band in the direction of the maximum shear stress 1. The failure
mechanism occurs when T reaches 7. the critical value of 1.

In order to show the influence of each failure mechanism we study an edge crack
plate specimen under tensile load, in which the ratio of the crack length (a) to the plate
width (w) varies such as %= 0,1 ;0,5 or 0,9. When % is growing T is decreasing, in the
same time Ggp is increasing. The fracture criteria € > T, Or Ggp > O, Will manage then the type

of failure mechanism.
. . . a . .
Going from a finite element analysis for each — ratio. Such as analysis allows us to
W

determine boundary conditions near the crack tip. These boundary conditions are used then
in our analysis in order to provide full elastic-plastic solution which relates the local stress
field (inner field) to the far stress field (outer field).
The aims of the paper are twofold :
First is to give more accurate elastic-plastic solution near the crack tip.
Second is to give the basis of failure criteria {slip failure,. cleavage failure) and to
determine the static conditions of the studied structure which privilege one of the two

mechanisms of failure.
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Computation Procedure
Description of the method

The energy variational method proposed by LI [3] is adapted in this work to study
the full elastic-plastic stress field of a mode I crack. The main idea of this method is to
establish a statically admissible stress field around the crack tip (inmer field) connected
continuously to the far stress field (outer field). The unknown parameters can be adjusted by
minimizing the complementary energy of the structure.

Consider a naterial which deforms according to the Ramberg-Osgood  stress-strain

relationship, namely:

1+v  1-2y 30 (o, )"
By =——s, + 0ud, +— 5
E 3E 2E{ o,

()

where Ejj are the strain components, sij the deviatoric stress components, Okk is the
hydrostatic stress, E the elastic modulus, v Poisson's ratio, 6'j the Kronecker delta, o a
material constant, n the hardening exponent, og the yielding stress, and O¢ the Mises
equivalent effective stress defined as follows:

C¢ = (3/2 5;5 535) 12 )
The inner stress field around the crack tip is assumed to be derived from a four-term

expansion of the stress function bin:

i =100 (8) + 1§, (8) +r2§, (0) + r8, (6) 3)

where r and 0 are the polar coordinates whose origin is the crack-tip; Eﬁo (0), $| (6) ... are
angular dependent functions and S0» 51 .- undetermined exponents with sg< §1< ... The

first term of (3) is the asymptotic field of the HRR solution. The last three terms can be

deterinined by the variational technique.
For more convenience, we suppose that 60 (6), 51 (0), ... can be approached by

using a series of basic functions, such as polynomial functions of order q:

g
$,(8)=>a,0’ O
j=0
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The coefficients ag; can be calculated by developing the HRR solution into
polynomial functions, while the coefficients aj; (i>0) can be determined by considering the
continuity between the inner and outer fields.

Suppose that the outer field is already known by its stress function ¢y Similarly to
(4), gy and its partial direvatives with respect to r at a circle boundary r=R can also be

developed into the polynomial functions of order ¢:
q .
¢,.(r=R)= E bDJBJ
j=0

a¢aur(r= R) _ z ¥ (5)
ar - Z‘ob”e

9’¢,,(r=R) 3
out = b e}
ar’ ;2=o 2

The inner field and the outer field must be connected continuously across the circle

boundary r=R . This condition leads to the following equation:

(Al=[R]" [B] O

where [A] is the unknown constant matrix and [A] =[a,-j 1, i=1,2,3; j=0,1,...q;

[R] is a constant matrix of dimension 3x3 and:

Rsl Rsz Rs3
[R] = SIR.\‘I—I Sstz_l s3R53—l (7)
5,(s, = DR 5,(s, ~ DR s5,(5, - DR

[B] is a constant matrix of dimension 3x(g+1) and:
by, — R a4 by, — R*ay,
[B] = b, — SR ay, b, — s,R**ay ®
by, — 5o (5o — DR ag, by — 555 = DR ay

From (6)~(8), all unknown constants a;; can be obtained by a simple matrix multiplication.

To deternine the 3 exponents 5|, 52 and 53, the theorem of the minimum complementary

energy is used. The complementary energy U, of a structure in which the material follows
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the stress-strain relationship defined by (1) for either plane stress or plane strain is:

2 n+t
U= l;%cj +'1;_;!°**2 * E(::il)[g—J @ oo
o 0
The integration is calculated in the circle area Qe r<R. The variation of the
statically admissible stress can be completed by varying the exponents 5;. The problem
then consists in finding out the parameters (s, 59 ,51) so that the complementary energy
becomes stationary and minimum. This minimization problem can be solved by using
numerical methods.
By substituting (s, 57 ,53) into (6), all coefficients a;; can be determined. The stress

function of the inner field is completely defined by (3).

Numerical procedures

The planc-strain crack-tip stress field is determined by using the energy method
associated with the finite element modelling. The far stress field at the circle boundary r=R
is given by the FEM which does not need to be very fine. The FEM results allows us to
verify the accuracy of the energy variational method in the elastic-plastic zone near the
crack tip.

In general, the finite-element analysis only gives the siress components at the circle
boundary. From these stress components, the stress function and its derivatives with respect

to r can be calculated by following equations:

0., (R,8)= R? {sin 6 £ (8)cos0d0 - cose [ £ ®)sin ede}

9., (R.6) ¢, (R,0) o ' (10)
= 20 o e —RLG,G(R,B)a’B

92 R,0

D 0 (k9)

wheee [ (R.0) =0, (R,6)+ [0, (R,6)d0.

The integration can be carried out by using a numerical method. Knowing the stress
distribution at the circle boundary r=R, the stress function and its derivatives of the outer

field with respect to r can be obtained from (10).
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By using the energy variational method and the boundary conditions (10), we carry
out detailed computations of the stress fields for a single edge cracked panel (SECP) with
three a/w ratios, a/w = 0.1,0.5, and 0.9, where @ is the crack length and w the specimen
width. When the crack is short, the uncracked ligament is essentially subjected to tension;
while the uncracked ligament is essentially subjected to bending when the crack becomes
longer,. So the triaxiality near the crack tip varies with the crack length. Different loading
levels are chosen such that the plastic deformations develop from small-scale yielding to

full yielding. The values of the material propertics used in the calculations are n=10, E/cp

=300, v=0.3 and a=1. A general-purpose finite-element program developed by le Centre
d'Energie Atomique de France, named CASTEM 2000, is used for preliminary
computations.

The outer ficld, represented by the stress distribution at the circle boundary r=R, is
evaluated by the finite element method. These stress components are converted into the
stress funcion and its derivatives by using (10). The choice of the radius R does not
influence much the accuracy of the calculation. However, this radius cannot be too long
because the inner field is approached only by a four-term expansion. In this work,
R=0.05w is chosen for specimens with short cracks, while R=0.09w is chosen for
specimens for long cracks.

The near-tip asymptotic field, described by the first term of expansion (3), is
characterized by the J-integral which can be determined in the finite element modelling.
The virtual crack extension method developed by PARKS [4], implemented in the CASTEM
2000 program, is used to calculate the J-integral. Knowing the value of the J-integral , the
amplitude of the HRR solution can be determined. '

Then the first term of the inner field and the outer field are approached by
polynomial functions as described in (4) and (5). Thus all the coefficients in the stress
function of the inner field can be obtained by a simple matrix multiplication (6).

The differenl exponents s), 39, §3 can be calculated by minimizing the

complementary energy in the structure. The numerical procedure used in this work is the
downhill simplex method. This method is easy to use (0 find out the minimum of a function

with more than one independent variable. With this method, the exponent vector { 51, 52,

s3} can be found. The convergence is guaranteed by this method for any initial simplex
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guessed . However, a local minimum point may be reached. So it js preferable to proceed 1o
several downhills with different initial simplexes. The optimal point can be chosen after

survey of the results.

Results and Discussions

Complete stress fields around the crack tip

The power exponents in expansion (3) obtained for SECP’s with different crack
lengths and loading levels are listed in Table 1. Table 1 shows that in all cases studied in
this work, a 4-term expansion (including the HRR solution) is sufficient to connect
accurately the inner elastic-plastic stress field near the crack tip to the far outer field. The
exponent of the last term is often very big. This means that its influence on the near tip
stress distribution is very small, nearly negligible. It is also seen that the inner field extends
fargely over distances of 5J/0, encompassing length scales in the cleavage fracture process

zone, both in small- and large-scale yieldings.

Table 1: Power exponents in the expansions of the complete solution

avy  Riw J yielding Sy ) Sy $3
(N/mm) scale
0.1 0.05 277 SSY 1.909 2,65 274 30
0.1 005 1599 MSY 1.909 203 296 85
0.1 0.05 6393 LSY 1.9069 2 2.85 200
05 005 317 8sY - 1909 258 269 946
05 005 13.82 MSY 1909 230 248 250
0.5 005 7229 Fy 1.909 215 535 128
09 009 277 SsY 1909 265 274 28
0.9 0.09 1599 MSY 1.909 360 3.65 3.70
09 009 3016 Fy 1.909 342 345 3.51
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In order to verify the results of this approach, we compare the complete solutions
with those of the finite element method. The results of such comparisons are presented in
Fig. 1.

The angular distributions of the stress components are illustrated for distances
r=2J/G, from the crack tip, while the radial distributions are presented along the uncracked
ligament near the crack tip within distances r</0Jic,. Fig. 1 shows a total agreement
between the complete solutions of the energy method and those of the finite element method
for short and long cracks under SSY and LSY conditions. This means that a four-lerm
expansion can accurately describe the inner stress field near the crack tip which is
connected to the far field of any real engineering structure. These results confirm those
obtained by Li [3] for whom the first term in pure elastic expansion was used as the far outer
field,

It must be noted that the complete solution obtained in this work by using the small
deformation theory are accurate only beyond certain distances from the crack-tip, of the

order of 2J/cy (MCMEEKING, [5]). Within these distances, the results may be erroneous

compared with those obtained with the limit deformation theory. But in general, the zone

within r=2J/cq is small compared with the plasticity extent. Therefore, the complete

solution is accurate enough to represent the stress distribution near the crack-tip.

In recent studies, the criterion proposed by RITCHIE et al. 16], known as RKR
criterion, was often used to predict the cleavage propagation of an elastic-plastic crack.
According to this criterion, (he cleavage fracture requires achieving a critical normal stress
o, at a critical distance r along a line where the normal tensile stresses are maximum. This
line, if called cleavage line, must be one of the trajectory lines of the principal stresses
starting from the crack tip. In the mode I problem, the cleavage line is just along the
uncracked ligament ahead of the crack tip. However, in the mixed mode problem, this line
may not be a straight line ahead of the crack tip. In this case, the cleavage line can be
obtained only if the complete solution is known. In this work, the possibility to obtain the
cleavage line in the mode I problem is presented. The cases for the mixed mode will be the

subject of forthcoming studies.
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Fig.1: Comparison of the stress flelds between the results of the finite element modelling and of
the complete solution
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. Cleavage fractures

The trajectory lines of the principal stresses for the in-plane problem are easy to
obtain by using the Mohr circle technique if the stress field is known. By using the complete
solution mentioned above, the trajectory lines of the principal stresses of SECP specimens
are drawn both for a short crack (a/w=0.1) and a long crack (@w=0.9) as shown in Figure 2.
From Fig. 2, one can see that the principal siresses near the crack tip always follow the
direction of the crack plane by forming a “cleavage band #. This means that if the crack
grows in the cleavage mode, it will always follow this cleavage band. The heterogeneity of
the material may perturb the growth direction on microstructural scale. However, the crack
growth on macroscopic scale must be governed by the cleavage band. Fig. 2 also shows that
the trajectory field of the principal stresses of a short-cracked specimen are quite different
from that of a long-cracked one. In a short-cracked specimen, where the uncracked ligament
is essentially subjected to tension, the cleavage band stretches quite far away from the crack
tip; while in a long- cracked specimen, where the uncracked ligament is essentially
subjected to bending, the cleavage band stops at a neutral point beyond which the ligament

is subjected to compression.
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Fig.2: Trajectory line fields of (he principal stresses near the crack tip for a/w=0.1 and 0.9.

It is necessary to note that the finite element solution can also provide such trajectory
fields by using a special post-procedure. However, the complete solution makes this work

easier and more accutate,
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Slip fractures

If the crack propagates in a ductile manner, the plasticity will progress from the
crack tip until a characteristic size is reached along a maximum shear stress direction,
before a fraciure is observed. Few criterion studies have dealt with this type of fractures so
far. However, slip fractures have been observed in many experimental studies. SHIH and
GERMAN [7] teported that they occurred in A533B steel center-cracked panels (CCP) under
tensile loads when the cracks were deep enough. They also noted that the slip fracture
toughness was almost twice as high as that of (he cleavage fractures,

Slip fractures can be studicd if one knows the complete solution of the stress field
around the crack tip. In an elastic-plastic bidimensional structure, the plasticity Progresses
along the planes of the maximum shear stresses. The maximum shear stress at a point can be

calculated when the three principal stresses are known:

Tmax = (0] - 03)/2 (an

where 6 | is the maximum principal stress and 3 is the minimum principal stress. The
direction of Ty, is at 45° with respect to o1 and 03. In the case of plane strain under
tensile loads, the maximum principal stress o] is always in the structure plane, i.e, in the
XY-plane. However, the minimum principal stress 63 may be in the XY-plane or in the
direction perpendicular to it, i.e. along the Z-axis. Whether 03 isin the XY-plane or along

the Z-axis, the region near the crack tip can be divided into several different zones., In the
zones belonging to the first case, say zones I, the maximum shear stress Tmax 15 in the XY-
plane too. In the zones belonging to the second case, say zones II, Ty, is at 45° with
respect to the XY-plane. Fig. 3 shows the division of the region near the crack tip into such
zones for SECP’s according to our calculations. For shorter cracks, zone I is an open area
and limited by [6l<30°, For longer cracks, this zone is a closed area and bounded by 181<40°
near the crack tip.

The division of the region into such zones is important insofar as the plasticity
developments are different in the two zones, If the plasticity progresses in zones I, one

part of the structure will slip with respect to another part along the direction of Trax in the
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XY-plane. However, if the plasticity develops in zone 1I, the global slipping at 45° to the
XY-plane cannot be observed due to the thickness of the structure. Slipping on a

microstructural scale is transformed into an axial deformation in the XY-plane.

Y  poundaries between the zone | and zone ]
for SECP with long crack  for SECP with short crack

zonel L

-
r

X . zonell

N 40
crack 2 ‘3°°*

X
Fig.3: Division of the region near the crack tip into zone I and zone 11

Since the maximum shear stresses in Zones I are situated in the XY-plane, the

growth direction of a ductile crack can be determined by drawing the trajectory lines of the
maximum shear stresses near the crack tip. The complete solutions facilitate this work.
Fig. 4 shows these trajectory line fields of SECP's for different crack lengths and loading
levels. Observation of Fig. 4 shows that the trajectory lines of the maximum shear stresses
concentrate in several directions from the crack tip by forming some “slip bands”. One can
observe 3 slip bands for all specimen geomeiries considered: the first with 6=50°, the
second with 8=100° and the third with 8=140°, From Fig. 4, it is observed that all these slip
bands are situated in zone L. One can also note that from any point situated in the vicinity of
the crack tip, the trajectory lines of the maximum shear stresses will follow one of the three
slip bands. This means that if the plasticity develops in the vicinity of the crack tip, it will
progress in one of these directions and will cause the structure (o slip in fhe XY-plane.

From Fig.4, one can clearly observe the difference between the direction of the first
slip band of a short-cracked SECP and that of a deeply-cracked one. The first slip band in
the short-cracked SECP is oriented at about 45° with respect to the crack plan. The
orientation angle is bigger when the crack becomes longer. It can reach 65° for a deeply-

cracked SECP. This phenomena shows that the slip mode for a crack essentially subjected
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to tension is quite different from that for a crack essentially subjected to bending.

Calculation shows that the maximum shear stresses along the third slip band are
smaller than those along the first two. Therefore one can conclude that the crack has little
probability to grow in this direction, However, the magnitude of the maximum shear
stresses along the first slip band is comparabie to that along the second. Fig.5 shows the
maximum shear stresses along these two slip bands in a short cracked specimen and in a
long-cracked one. From Fig. 5, one can observe that the maximuint shear stresses along the
second slip band are higher than those along the first within a certain distance from the
crack tip, and then become lower beyond this distance. The high shear stresses along the
second slip band near the crack tip may cause the crack opening which can be observed in
plastic material. However, the maximum shear stresses rapidly decrease along the second
slip band. The plasticity is constrained by the geometry of the specimen. It does not
develop sufficiently, so that the crack cannot initiate in the ductile manner along this
direction, This may explain why few slip fractures in this direction have been observed in
experitnental studies, On the other hand, the maximum stresses along the first slip band are
higher than those along the second for long distances. Therefore, the plasticity will develop
essentially along this direction. One can conclude that the slip fracture will essentially occur
along the first slip band under mode I loading,

It is also important to note that the maximum shear stresses along the two slip bands
in short-cracked SECP’s are higher than those in deeply-cracked SECPs, This explains why
the slip fractures are often found in specimens whose uncracked ligaments are essentially
subjected to tension.

These remarks do agree with the experimental results. The experimental studies of
SHIH and GERMAN [7] about the deeply-cracked CCP's of AS33B steels showed that slip
fracture occurred in the direction of about 45° to the crack plane. The analysis of the slip
bands of the full stress field in this work predicts exactly the same direction for low-

hardening plastic materials.
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Fig.4: Trajectory line fields of the maximum shear stresses
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Fig.5: Maximum shear stresses along the first two slip bands for a/w=0.1 and 0.9.

Competition between cleavage and slip fractures

The analysis of the trajectory line fields of the principal stresses and of the maximum
shear stresses enables us to determine the cleavage bands and the slip bands of cracked
structures. However, such an analysis cannot predict in which direction the crack will grow.
To answer this question, these two modes of fractures must be put into compelition,

We first suppose that the RKR criterion can be extended to the slip fracture: the
crack will grow along one of the slip bands if a critical shear stress T, at a critical distance
Fic along this slip band is reached. 1, and ry. are material constants and their valyes can be
determined experimentally. They are supposed to be independent from the slip band
orientation. According to the remarks in the above section, we can suppose that, in most
cases, the slip fracture occyrs only along the first slip band (8 =45~60°).

These hypotheses lead to the following criteria:

Let o(ry.) be the maximum principal stress at a characteristic distance fi. along the

cleavage band and T(ri) the maximal shear stress at a characteristic distance e along the

slip band. The crack will grow along the cleavage band if
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o(r,) S o

o(n)> o, and — (12)
T(rﬂ'c ) T c
The crack will grow along the slip band if
clr c
(re)> T. and (r,) <—= (13)
T(rﬂc ) T [3

It is necessary to note that ryg, as opposed to which is often considered as a
microstructural quantity, must be a macroscopic quantity, since the plasticity near the crack
tip in a ductile material generally extends over a rather Jarge area, comparable to the size of
the crack length .

In fact, criteria (12) and (13) describe the competition between cleavage and slip

fractures, or between mode I and mode IT fractures of a ductile crack. These criteria can
also be applied to the mixed mode problem if the stress field near the crack tip is known.
It is clear that these criteria may also include the critical strain values. MCMEEKING [5]
considered that the cleavage fracture might suggest a stress-controlled process while the slip
fracture seemed to suggest a plastic strain-dominated process. From this point of view,
mixed criteria may be more adequate to involve predictions of the transition of the fracture
made. The choice of the critical quantities will depend on the results of experimental
studies.

In order to show the trend of the crack growth, we simulate such a competition for
SECPs under different loading levels. We suppose artificially r=0.05 and rie=0.5 in this
simulation. The characteristic slresses o(r.) and (ny) are calculated for different crack
lengths and represented against the value of the J-integral as shown in Figure 6.

From Fig. 6, it is observed that when the loading level is low, the values of o(ry) are nearly
identical for all initial crack lengths. As the loading level increases, the values of o(ri)
increase at different rates for differently-cracked specimens. In the specimen with a/w=0.9,
o(r,,) Increases more rapidly than in the other two specimens (a/w=0.3 and 0.1). It is when
a/w=0.1 that 6(r.) increases the most slowly. This means that the triaxial tension level in
the vicinity of the crack tip increases more rapidly in bending-loaded specimens than in
tension-loaded ones as the remote loads increase. The opposile phenomenon is observed for

the values of T{ry)- In this case, the maximum shear siress T(ry) is higher in the short-
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cracked SECP (a/w=0.1) than in the deeply-cracked ones (a/w=0.5 and 0.9). Therefore one

can conclude that in bending-loaded specimens, the cleavage fractures are more probable.

On the other hand, in tension-loaded specimens, the slip fractures are more probable. They

will oceur if condition (13) is reached.

o/l

000(r=0.05,0=0)

tmax following the slip bands at r=0.5

aiw=0.1

=1
aw=0.5

80

J

Fig.6: Competition between the characteristic stresses o(ry.) and t(ry;.) in SECP specimens.

Conclusions

An energy variational method has been proposed to study the complete solution of

the stress field near a stationary, plane strain, mode 1 crack in a power-law hardening

material. In association with the finite element method, this analysis can be used in real

engineering structures. It is shown that in general, a four-term expansion of the siress

function is sufficient to describe the stress field accuratcly'. near or far from the crack tip.

This property allows us to examine the plasticity progression which can extend over a large

region before a slip fracture oceurs,
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By using the Mobhr circle technique, the trajectory fields of the principal stresses and
the maximum shear stresses have been drawn from the complete solution in order to
determine the crack growth direction. One notices that the crack can progress along a
“cleavage band” or along a “slip band” according to the triaxial tensile stress level in the
vicinity of the crack. These bands can easily be found from the trajectory fields. The growth
direction of a ductile crack finally depends on the competition of the stress concentrations
along these bands. Based on the RKR model, criteria (12) and (13) have been proposed to
judge such a competition. According to these criteria, cracks in bending-loaded specimens
show higher probability to grow along the crack plane since condition (12) dominates the
competition, while cracks in tension-loaded specimens may initiate at a certain angle to the
crack plane if (13) is satisfied. It must be noted that the criteria proposed in this study will

have to be confirmed in further definitive experimenis giving ¢, (or J; ),and T, values.
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