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ABSTRACT: Faligue cracks in shot peened and case hardened notched machine componenis are
subjected to the notch tip stress field induced by the load and the residual stress resulting from the
surface treaiment. Both stress fields are highly non-linear and appropriate handboaok stress intensity
solutions are unavailable for such configurations, especially in the case of planar surface breaking
cracks. The method presented in the paper is based on the generalized weight function technique
enabling the stress intensity factors to be calculated for any Mode I loading. Both the general weight
SJunctions and the calculated stress intensity factors are validated against various numerical and
analytical data. The numerical procedure for calculaiing stress intensity factors for arbitrary non-
linear stress distributions is briefly discussed as well. The method is particularly suitable for
modeling fatigue crack growth of single buried elliptical, surface semi-elliptical and muliiple cracks.

Notation

a - depth of a semi-elliptical, elliptical (minor semi-axis) or edge crack

A - the deepest point of surface, semi-elliptical crack

B - the surface point of semi-elliptical crack

c - half length of semi-elliptical or elliptical crack {major semi-axis)

Ki - mode I stress intensity factor (general)

K4 - mode I stress intensity factor at the deepest point A

K - mode I stress intensity factor at the surface point B

M; - coefficients of weight functions (i= 1, 2, 3)

M;, - coefficients of the weight functions for the deepest point A (i= 1, 2, 3)
Mg - coefficients of the weight functions for the surface point B (i= 1, 2, 3)
m(x,a) - weight function (general)

mafx,a) - weight function for the deepest point A of a semi-elliptical surface crack
mp(x,a) - weight function for the surface point B of a semi-elliptical crack
Q - elliptical crack shape factor

S - external (applied) load

s - shortest distance between the point load and the crack front
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t - thickness

& - angle co-ordinate for parameltric representation of an ellipse

Q - crack area

p - distance between the point load and any point A on the crack front
P P2 Pa. P4 - geometrical parameters of a planar crack

a(x) - a stress distribution over the crack surfaces

G - nominal or reference stress (usually the maximum value of G(x}))

x - the local, through the thickness co-ordinate

Y - gcometric siress intensity cotrection factor

Introduction

Fatigue durability, damage tolerance and strength evaluation of notched and cracked
structural elements require calculation of stress intensity factors for cracks located in
regions characterized by complex stress fields. This is particularly true for cracks emanating
form notches or other stress concentration regions that are frequently found in mechanical
and structural components. In the case of engine components, complex stress distributions
are often due to temperature, geometry and surface finish resulting in superposition of
applied, thermal and residual siresses. In the case of welded or riveted structural
components, it is often necessary Lo deal with cracked components repaired by overlapping
patches. Such components require fatigue analysis of cracks propagating through a varicty
of interacting stress fields. Moreover, these are often planar two-dimensional surface or
buried cracks with irregular shapes. The existing handbook stress intensity factor solutions
are not sufficient in such cases due to the fact that most of them have been derived for
simple geometry and load configurations. The variety of notch and crack configurations,
and the complexity of stress fields occurring in engineering components require more
versatile tools for calculating stress intensity factors (han the currently available ready made
solutions, obtained for a range of specific geometry and load combinations.

Therefore, a method for calculating stress intensity factors for one- and two-
dimensicnal cracks subjected to two-dimensional stress fields is discussed below. The

method is based on the use of the weight function technique.
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Stress Intensity Factors And Weight Functions

Most of the existing methods of calculating stress intensity factors require separate
analysis of each load and geometry configuration. Fortunately, the weight function method
developed by Bueckner [1] and Rice [2] simplifies considerably the determination of stress
intensity factors. The important feature of the weight function is that it depends only on the
geometry of the cracked body. If the weight function is known for a given cracked body, the
siress intensity factor due to any load system applied to the body can be determined by
using the same weight function. The success of the weight function technique for calcutating
stress intensity factors lies in the possibility of using superposition, It can be shown, [3},
that the stress intensity factor for a cracked body (Fig. 1) subjected to the external loading,
S, is the same as the stress intensily factor in a geometrically identical body with the local
stress field o(x) applied to the crack faces. The local stress field, 6(x), induced in the
prospective crack plane by the external load, S, is determined for encracked body which

makes the stress analysis relatively simple.

y* y‘\

o(x) Pl a(x) v

~
2

v

Fig.1. Nomenclature and the concept of superposition
Therefore, if the weight function is known there is no need to derive ready made stress

intensity factor expressions for each load system and associated internal stress distribution.

433




The stress intensity factor for a one dimensional crack can be obtained by multiplying the
weight function, m(x,a), and the internal stress distribution, ¢(x), in the prospective crack

plane, and integrating the product along the crack length *a’.
a
K= Io(x)m(x, a)dx , )
0

The weight function, mn(x,a), can be interpreted (Fig.2) as the stress intensity factor that
results from a pair of splitting forces, P, applied to the crack face at position x.

aa

y

L 4

Fig. 2, Weight function for an edge crack in a finite width plate; nomenclature

Since the stress intensity factors are linearly dependent on the applied loads, the
contributions from multiple splitting forces applied along the crack surface can be
superposed and the resultant stress intensity factor can be calculated as the sum of all
individual load contributions. This results in the integral, (1), of the product of the weight
function, m(x,a), and the stress function, a(x}, for a continuously distributed stress field. A
variety of one dimensional (line-load) weight functions can be found in references [4,5,6].
However, their mathematical forms vary from case to case and therefore they are not easy to
use. Therefore, Shen and Glinka [7] have proposed one general weight function form which

can be used for a wide variety of Mode I cracks.
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Universal Weight Functions For One-Dimensional Stress Fields

The weight function is dependent on the geometry only and in principle should be
derived individually for each geometrical configuration. However, Glinka and Shen [7]
have found that one general weight function expression can be used to approximate weight
functions for a variety of geometrical crack configurations subjected to one-dimensional
stress fields of Mode 1.

m(x,a)z—;c‘[ﬁ1+Ml(l—§)%+M2(l—§Jl+M3(1"§) | @)

As an example the system of coordinates and the notation for an edge crack are given in

™l

Fig. 2. In order to determine the weight function, m(x,a), for a particular cracked body, it is
sufficient to determine, {8], the three parameters M;, M;, and M; in expression (2). Because
the mathematical form of the weight function, (2), is the same for all cracks, the same
methods can be used for the determination of parameters M,;, M,, and M; and the
integration routine for calculating stress intensity factors from eq.(1). The method of finding
the M; parameters has been discussed in reference [8]. Moreover, it has been found that
only limited number of generic weight functions is needed to enable the calculation of stress
intensity factors for a large number of load and geometry configurations. In the case of 2-D
cracks such as the surface breaking semi-elliptical crack in a finite thickness plate or
cylinder, the stress intensity factor changes along the crack front. However, in many
practical cases the deepest point, A, and the surface point, B, are associated (Fig. 3) with the

highest and the lowest value of the stress intensity factor respectively.

435




N S —

Fig. 3. Semi-elliptical surface crack under the unit line load; weight function notations

Therefore, weight functions for the points A and B of a semi-elliptical crack have been

derived, [9], analogously to the universal weight function of eq.(2).

e For point A (Fig. 3)
)

-~ 1
2 x Y2 X X
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» For point B (Fig. 3)
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(3)

Gy

The weight functions, ma(x,a) and mp(x,a), for the deepest and the surface points, A and B,

respectively have been derived for the crack face unit line loading making it possible to

analyze one-dimensional stress fields (Fig. 3), dependent on one variable , x , only,

A variety of universal line load weight functions [9-13] have been derived and published

already. The M, parameters for the edge (Fig.2) and the semi-elliptical surface crack (Fig.3)

in a finite thickness plate are given in the Appendix.
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Sequence of Steps for Calculating Stress Intensity Factors Using
Weight Functions

In order to calculate stress intensity factors using the weight function technigue the

following tasks need to be carried out:

*  Determine stress distribution, 6(x), in the prospective crack plane using linear elastic
analysis of uncracked body (Fig. 1a), i.e. perform the stress analysis ignoring the crack
and determine the stress distribution o(x) = g 1(S,x);

* Apply the “uncracked” stress distribution, o(x), to the crack surfaces (Fig. 1b) as
traction

*  Choose appropriate generic weight function

» Integrate the product of the stress function o(x) and the weight function, m(x,a), over
the entire crack lengih or crack surface, eq.(1).

The weight function (3) for the deepest point A was used to calculate stress intensity factor

for the non-linear stress field (5) acting in the crack plane.

o(x):co(l—i)z (5)

a
The M;4 parameters for the weight function (3) are given in the Appendix (eq. A4-AG). The
accuracy and the versatility of the weight function (3) for the semi-elliptical crack in a finite
plate (Fig. 3) is illustrated in Figs. 4 and 5, showing the comparison with the Finite Element
results of Wang [12] and Shiratori [14]. It can be seen that the agreement is good over the
entire range of parameters for which the weight function parameters (A4-AG) have been
derived. The parameters M; of the weight function (3) were derived using the reference data
for O<a/t<0.9 and O<a/c<1. The accuracy of the weight function while compared with the

finite element data was better than 3%.
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Fig. 4. Comparison of the weight function based stress intensity factor and FEM data [14]
for quadratic stress distribution; the deepest point A
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Fig. 5. Comparison of the weight function based stress intensity factor and FEM data [12, 14]
for quadratic stress distribution; the surface point B
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Weight Functions for Two-Dimensional Stress Fields

In spite of the efficiency and great usefulness of the line load weight functions (Figs.
2 & 3), they cannot be used in many practical cases where the stress fields is of two-
dimensional nature, i.e. where the stress field G(x,y) in the crack plane depends on the x and
y coordinates. Therefore, a weight function for the unit point load (Fig. 6) is needed in order
to calculate stress intensity factors for cracks subjected to two-dimensional stress fields.
A two-dimensional point-load weight function, ma(x,y), represents the stress inlensity Factor
at point, A, on the crack front (Fig. 6), induced by a pair of unit forces attached to the crack
surface at point P(x,y). If the weight function is given in a closed mathematical form, it
allows to calculate the stress intensity factor at any point along the crack front. In order to
determine the stress intensity factor at any point on the crack front induced by a
two-dimensional stress field, a(x,y), the product of the stress and the weight function needs

to be integrated over the entire crack surface area & .

Ky = fo(x,y)m,\(x,y,mdxdy ()
4]

There are only a few point load (2-D) weight functions available. Among them the weight
function for an embedded elliptical crack in an infinite body is the most often discussed in
the literature [15-17]. Unfortunately, most of the existing poini-load weight functions are
given in the form of complex mathematical expressions difficult to use in practice,
Therefore an attempt was made to present all the existing point-load weight functions in an
uniform form making them easier for comparisons and numerical analysis. It has been found
that all the existing point load weight functions for cracks in an infinite three dimensional
bodies can be expressed using the s, p, p1, pa, ps and py parameters shown in Fig. 6.

It was found that the weight function for an elliptical crack in an infinite 3-D body can be

written in the form of eq.(7).

P\/; ] s
mA(X-%P):?;;P—ZJ?—L————S—-—-— ')
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Fig. 6. Elliptical crack in infinite three-dimensionat body: point load weight function notation
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Fig. 7. Comparison of the analylical [19] and the weight funciion [18] based siress intensity
factors for an elliptical embedded crack subjected to nonlinear siress fields; a/e=0.2
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The weight function (7) was verified [18] by comparison of the weight function ¢))
based stress intensity factors with the semi-analytical data of Shah and Kobayashi [19]. The
stress intensity factor results shown in Fig. 7 were calculated using eqns.(6) and (7) and

three different stress fields given by expressions (8-10).

O‘(x,y)=0'0(—:-)2 (®)

2
0(x.>r)=co(§] )

a(x,y)=a, ZZ (10)

The agreement between the weight function based calculations [18] and the data
obtained by Shah and Kobayashi [19] was very good for a wide range of ellipse aspect
rattos a/c. The data shown in Fig. 7 were obtained for a/c=0.2. The weight function (7) can
be used to derive weight functions alréady known in the literature,

By assuming that parameters p,, P2, P3 and py tend to inﬁhily the weight function {11) for

an infinite edge crack in an infinite [20] body can be derived (Fig. 8)

PJ_J—

m, (x,y.P)= w22 (n

By setting all the parameters p, =p2 =p; =p4=a the well known weight function (12) for a

" penny shape crack [21] in infinite body (Fig. 9) is derived.

‘f 2-5 (12)

my (x, %P)— Zpen

441




442

S

P(x,y)
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Fig. 9. Penny shape crack in an infinite body




Conclusions

The weight functions for mode I cracks can be ‘approximated by using one general
expressions containing the most important geomelrical parameters. The knowledge of the
general weight function expression makes it possible to determine easily weight functions
for particular geometrical configurations and to integrate them using the same numerical
procedure. It has been found that the approximate weight functions gave accurate estimation

of stress intensity factors for a variety of non-linear stress fields.
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Appendix

a) Parameters M, (A1), M, (A2) and M, (A3) of weight function (2) for an edge crack in a
finite thickness plate (Fig. 3)

-0.029207 + % (0.213074 + % (-3.029553+ %(5.901933 + %(-2.657820))))

M, =
1.0+ % (-1.259723 4 % (-0.048475 + % (0.481250+ %(-0.526796+ %(0.345012)))))
0451116+ %(3.462425 + %(-1.073459 + %(3.558573 + %(-7.553 533))
M2 =
1.0+ %(-1.496612 + %(0.764586+ %(—0.6593 16+ ?(0.258506+ %(0.1 14568)))
0.427195+ % (-3.730114+ %(16.276333+ %(~18.799956+ % (14.112118))))
MJ =
1.0+ ?(-1. 129189+ %(0.033758+ %(0.1921 144+ % (-0.658242+%(0.554666)))))
Valid for0 < a/t < 0.9

b} Parameters M;, of weight function (3) for a semi-elliptical surface crack in a finite

thickness plate (Fig. 4) - the deepest point A

24
M, = J—%@YO- 6Y,)- T (Ad)
M,, = 3 | (A5)
My, = 2(1/—;—(2—\'0- M, - 4) | (A6)

where;
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2 3
B, =1.0929+ 0.2581(3] - 0.7703[?-] + 0.4394(3)
C C C

2
B, = 0.456 - 3.045(E)+ 2.007 [3) . —-—Lq—m?
¢ c a\%
0.147 + (_]
C
9.953
B, = 0.995- 10 20 (1_3)
0.027 + = c
c
8.071
By = - 1459+ U 24.211(1—5}
0.014+2 ¢
[+

1.65
Q=10+ 1.464(3]
C

a ? a 4 a 6
Y|= A0+ AI(T] + Az[?] + Aa(—t‘)

2
Ay = 04537+ 0.1231(3) - 0.7412(5] + 0.4600(3]
C [ [+

and

k]

2
A, = - 1652+ 1.665(3] - 0_534(3) + ____&_M
[ c (a\
0198+ | -
\c)
9.286
A, = 3418 - 3.126(3] L, 17_259(1_3}
c

0.041+(i)
C

a 1.0 a 9203
A,= - 4228+ 3.643(——]+ — 21.924[1——]
0.020 +— ¢
c

¢) Parameters Mg of weight function (4) for a semi-elliptical surface crack in a finite

thickness plate (Fig. 4) - the surface point B

M,p = —::—(301?, - 18H,)- 8 (AT)

J4Q
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where:

and

Myp = —== (60F, - 90F,)+ 15

NZ%)

M3B = - (I+ MIB + MIB)

e el v JE

2
Co= 1.2972. 0.1543(3)- 0.0135(3]
C ¥

2
Ci= 1.5083- 1.3219(—“-)4- 0.5123(5]
C C

0.879

0.157+ 2
C

F, = |D,+D 3]2 D(ETJE
1= | De+D, () P2 ) c
a a 2 !
Do= 1.2687- 1.0642[—]+ 1.4646[—] - 0.7250(3]
[ C C

2
D= 1.1207- 1.2289(5J+ 0.5876(3)
C

C

Cz = - L.101 +

0.199

0.035+ 2
C

D= 0.190- 0.608(3)+
C

(A8)

(A9)
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