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ABSTRACT: The paper presents the application of an incremental collapse criterion in the case
when the yield limit value is temperature-dependent. The Young’s. modulus and thenmal expansion
coefficient values are assumed to be independent of temperature. The criterion is itlustrated by the
incremental collapse analysis of a thick-walled tube subjected to variations of internal pressure and
temperaiure field.  Both linear and logarithmic temperature distributions across the pipe wall
thickness are found suitable for the analysis. The computations are performed for two different
femperatures at the external wall side (293 and 473K). The extreme values of shakedown parameters
are determined. The computational results are compared with those obtained from a lot of 9 actual
pipes in service,

Introduction

Structural components subject to cyclic loading are assumed to undergo either
incremental collapse, alternating plasticity or plastic shakedown. The shakedown theory is
an obvious extension of the limit analysis to the variable load case. A principal goal of the
shakedown theory is to determine allowable variations of loads that will not induce plastic
strains during the cycles following the first one or a few first ones producing residual
stresses. If loads vary over a sufficiently large range then a structure will collapse due to
increasing plastic strains of a given sign (incremental collapse) or due to alternaling plastic
strains (alternating plasticity).

The two principal theorems of the shakedown theory were given by Me[an (1) and
Koiter (2). The Melan theorem is a generalized form of the theorem dealing with statically

permissible stress fields for time-dependent loads. With the Melan theorem applied to
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elastic—plastic structures there is no way of knowing whether the actual conditions will lead
to incremental collapse or alternating plasticity. It is possible to differentiate between those
conditions if a kinematically permissible solution is considered. This solution makes use of
properties of the permissible rate field and the Koiter theorem is again a generalized form of
the theorem pertaining to kinematically allowable rate fields for time-dependent loads.

A practically important case of loading involves a combination of variable mechanical loads
and time-dependent temperatures. The following effects can then be specified (3):

e thermal deformations affect stress fields,

¢ yield point stress value varies with temperature,

¢ elastic constants vary with temperature.

Kinematic shakedown theorem

The shakedown theorems have been derived initially accounting only for
mechanical loads (2, 4). Their extensions to thermal actions (5-8) took into consideration
not only thermal stresses but also the fact that material constants such as yield point stress
vary with temperature. In the case of a static approach (5, 6, 8) this effect as well as the
temperature dependence of elastic moduli can be incorporated relatively easily. However,
more complicated boundary-value problems are to be solved by means of the kinematic
approach, especially if incremental collapse is considered. The methods developed (9-12)
allow to find out the critical loads which may cause divergent increments of plastic
deformations simply from the analysis of possible mechanisms of those increments, without
tedious integration with respect to time as the original theorem required.

The kinematic shakedown theorem accounting for both thermal and mechanical
actions may be formulated as follows (13):

A given structure will not shake down over a certain load—temperature path if there exists

over a certain time period ( 1;, f2 } a load—temperature path and a plastic strain rate cycle

resulting in compatible increments of plastic strain
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where M;i—tensor of the thermal expansion coefficients, D —dissipation function,

ﬁ i denotes the residual stress field associated with the plastic strain field Eij- The external

actions resulting in some mechanical loads as well as in temperature fields are controlled by

a set of load—temperature factors B, s=1/,...r, referring to each one of the actions,

respectively:

B(c)= ZB.ORE). 5s0)= HORE). T60)= S8OTE) 0

Here P;—surface tractions, F;—body forces, T—temperature measured from the natural

state.

The values of the factors B; belong to a certain set Q in the r-dimensional space of those

parameters. The set £2 defines the range of their prescribed variations.

The inequality (2) can be easily rearranged by applying the principle of virtual work:

Jg ol (x. ). java > f_[D(E'ij,T)dth, @

Vv nv

where the thermoelastic stress 0' can be presented as follows:

opi (x,t) = Zﬂs(t EBS ){ 158 (x) +p] S(x)] (5)

Here 0‘ Bs . p i S are respective thermoelastic and thermal stress fields associated with unit

external actions, G ij denotmg respective mechanical stresses,
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Incremental collapse criterion

Let us consider the case in which the temperature variations of yield stress cannot
be neglected. Then the dissipation function depends not only on the plastic strain rate ¢ ;

but also on the instantaneous temperature:

D = oyl = D(e‘:}] ,T), ©6)
and is proportional to the increase in the yield point stress k:
D= DO(EU) (T), ')
where g{7T) defines the temperature dependence of k:
k(T) = kog(T), £(0)=1, ®

and Dy is the value of the dissipation at zero temiperature, determined uniquely by the

plastic strain rate £ E

In further considerations the function g(T) will be linearized:

g(T)=1~AT, )

A being a non-negative material constant.

After some rearrangements we can present formula (4) in the following form:

I ,[ Eﬁs(t)["u ‘(x’t)““ATS(")DO(Eij)]dth > fIDO(Eij)det. (10)

Konig (13, 14) showed Lhal the incremental collapse criterion assumes finally the form:
JL()av = [Do(agyav, (i
v v

where

)- max ZBS[ *(x)ag;(x) + AT (x)DO(AEU)] (12)

If the domain £2 is defined by the set of inequalities

B.v_ S B.\' S B:" (13)
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then equation (1 1) can be written as below:

I ias(")J s(xMV = IDO(AEij)dV, (14)
v

vs=1

where ay(x), Jy(x) are given by the formulas:

a(x)

_ BT if Ty(x)>0

; (15)
By if Ji(x)<0

Jo(x) = o} (x)AE;(x) + AT*(x)Dy (a&;(x)). (16)

Application of the kinematic method to analysis of a thick-walled tube

The incremental collapse analysis of a thick-walled tube, closed with rigid decks,
subjected lo variations of internal pressure and temperature field is considered.

The following simplifying assumptions are adopted:;
* rheological effects are neglected,

* yield limit value is linearly dependent on temperature,

* elastic moduli and thermal expansion coefficient are independent of temperature,

* asimplified (regular—<yclic) pattern of temperalure variation is adopted,

* effect of thermal insulation is accounted for in a simplified manner,

® both lincar and logarithinic temperature distributions across the pipe wall thickness are

taken into account,

The pipe is loaded with:

L. internal pressure p varying over the ran ge0Sp<poe,

2. internal temperature © varying over the range 0<©<0,,,,. © = N{a) - Tth), provided
Ttb) = 0, where T{a) and 7(b) are temperatures of the internal and external pipe surface,
respectively.

The stresses due to pressure p are:
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Oy = I+—1,
¢ b2 — 42 2
2 2
pa b
o, = 1-—=|, an
b2 —a? r2
pa
G, = s
b2 — a2
where r - current radius, a - internal pipe radius, b - external pipe radius.
The thermal stresses may be in accordance with (15) determined as:
[ 1 2 2 b
E 1 r“+a
Oy =—— —IaT(r)rdr + j(xT(r)rdr -oT(r)],
L a a
| r 2 2 b
E 1 r-—a
o, =— ——Ioﬂ"r rdr+———_[aTr rdr |, (18)
= oy P ot et
L a a
i b
E 2
G, =— ——IaT r)rdr—oT(r)],
L a

where T(r) — temperature as a function of the pipe radius r, G¢ — circumferential stress, &,
radial stress, G,—axial stress, E—Young's modulus, v —Poisson’s rat;:), o.—thermal
expansion coefficient. The values of E, v, o were assumed to be temperature—independent
material constan(s. i

It can be inferred from the axial symmetry of the pipe that incremental collapse is

the only possible mechanisn of failure, hence (14):

o(r)=C/r, Aey =AC/r?, Ae, =-AC/r?. (19)
Tresca yield criterion was adopted: o
o4 .| <2k(T), K(T)=ko(1-AT) 20
and therefore
AC AC AC
DO _Gr(—r_2]+c¢[?2_J—2k0r_2 1)
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Prior to computations temperature changes across the pipe wall thickness as obtained from

the linear and logarithmic temperature distributions were compared:

(22}

(23)

The computed temperature distributions across the pipe wall thickness are shown in Fig, 1.

Two actual tubes were selected with the largest and the smallest value of k = a/b.

Assuming T({b) =293 K we arrive at the following form of equations (22) and (23):

T6) =)+ o)~ T o

for the logarithmic distribution, and

T(r)=T(b)+[T(a)-

(23a)

for the linear distribution,

Differences between temperatures at the middle point of the wall obtained from the two

formulas are small. For a pipe with k=0.70 the discrepancy is about 23 K and for k= 0.90 it

does not exceed 6.5 K.
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Fig.1  Steel 10H2M. Calculated temperature distribulion (linear - dashed line,
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logarithmic - solid line) for twe pipes: I) - k = 0.70, II) - k = 0.90, where
k =a/h, a and b are internal and external radius of the pipe, respectively.

T(a) = 818K, T(b) = 293K




Computation of the shakedown range for the logarithmic temperature distribution

Substituting (22) into (18) and taking account of (17) we get total values of stress

due to pressure and temperature:

So= 3|t % Y L 2

b —a r 2(1—v)(b -2 ) r a“ In(a/b)

a2 W2 o0 b2 (b7 —a?)in(e/b)

=5 373 20} R

b —a r 2(1 - v)(b —a ) r a ln(a/b)

(24)
(b2 —a2) L + ln(r/b)]
5. = pal2 Ea.a’@ 2
e .

b2 _a? (1- v)(b2 - a2) ]+ a’ In(a/b)

Values of J(r) in equation {14) were calculated for s= p and s=© and they are as follows:

2ACa’b?
Ib()==75—% 3 (25)
)

AC Eoa” b’ —a®  2b? In(b/r)
J@ = —2' ) - 2 + Ako .

r 2(] - V)(b2 - az) a ln(b/a) r ln(b/a)
(26)

Values of J, and Jg are the following functions of radius r:
Tp(r)>0 for a<r<b,

J@(r)<0 for a<r<ry, 27

J@(r)>0 for p<r<h,

where radius 7, can be found from the relationship:
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b2 p2_g?  4Ake(l- v)(b2 - az)ln(b/ro)
_— + 5 + 5 =0. (28)
g a“In(b/a) Ecta” In(b/a)

Values of a,(r) and ag(r) from equation (14) are equal to:

0 for asr<r

3p(1)=Pmax > 20(r)= {@max for p<r<b >

Finally, in view of formulas (25)—(28), the incremental collapse condition can be written

as:

Eo |In(Bfp) I p? 1 [/ | (30)
pmux+9max2(l_v) Inp +BZ_1_p2(B2_1)+§8 Inp =2kolnp

b 1 4Akg{l —v
where B=—, p=—0, E=L.
a a Ea.
The value of p obtained from an approximated solution of equation (28) if € is assumed to

be small is (14):

BJ, _ [8mp* &

Computation of the shakedown range for the linear temperature distribution

Substituting (23) into (18) and taking account of (17) we get total values of stress due to

pressure and temperature:

p32 b2 Eo® 1

Oy =};)2—2[1+_2J_3(1—)(b2—§_2[(r2 +a2)(b2+ab+a2)-(b+a)(2r3+a3)],
—a -v)b" —a®)r

r
2 2
Eo@ / o 4
O =ﬂ5 I—E-i- -—-a—%[(rz—aZXb2+ab+a2)—(b+a)(r"—a3)].
b2 —a t 3(1—v)(b2—a2)r

__pat Eo.®
b? ~a? 3(1-~v)(b2—a2

Oz

)[Z(b2 +ab+ az)— 3(b+ a)r].

(32)
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Values of J (r) in equation (14) were calculated for s = p and s=0 an d they are as follows:

2ACa2p?
Jp(r)_m—), (33)
AC Ea ) 3 b-r
To(r)=2% [—Zab +b+ar]+2Ak 27l g
9() r2 3(1—\.?)(b2—a2)r2 ( ) ‘b-a

In view of relationship (18) radius rg can be found from the equation:

K15 +Korg + Ky =0, (35)
K; =Ea(b+a)- 6Aky(1- v)(b+a),
where Kj =6Akg(t—v)(b+a)b,
K3 =-2a2b°E.

Relationships (29), (33) and (34) combined give the following incremental collapse

criterion:

Pmax + ©max ! — [Em(a2 +ab + b2)+ Ko(lnb-1)-
3(1—V)(b —a ) a6

-Eo a2b2 (1/1'02) - K2 In Igp — Ker:I = 2](0 lng

where K, K, are to be meant in the same manner as in (35).
Values of r, for each pipe were determined from polynomial (35) using the Cardano’s

formula.

Results

The actual calculations were performed for pipes commonly used in the Polish
power plants made of 12HMF, 15HM and 10H2M steels. The external tube surface
temperature T(b) was assumed to be constant and equal to 293K or 473K, the latter being
valid for insulated pipes,

Pipe dimensions and actual service conditions are presented in Table 1,
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Table 1. Actual service conditions

Steel Dxg [mm] p [MPa] T(a) [K]

356x%36 8.83 773
12ZHMF 273x26 8.83 773
273x20 8.83 773
216%32 12.36 753
15HM 216x16 6.87 758
292x21 7.85 758
267x40 12.85 818
10H2M 178%26 12,36 Big%
419x20 2.94 818

D - pipe diameler, g - pipe wall thickness
Material properties adopted in the calculations may be found in Table 2.

Table 2. Material properties
Steel Re293 [MPal Re473 [MPa]l B [MPa] v o [K-l] A [K‘l]

12HMF 295 256 2.06x105 03 14.8x10% 769.8x106
15HM 295 275 2.06x105 0.3 14.4x%10% 840.4x100
LOH2M 265 245 2.06x10° 03 14.0x10°% 621.1x10°

R.293 . yield point at temperature of 293K

R473 . yield point at temperature of 473K

E - Young's modulus

v - Poisson's ratio

o - thermal expansion coefficient

A - coefficient to be found in relationship (20)

Equations (30) and (36) corresponding to the logarithmic and linear temperature
distributions may be presented in the following generalized form:

Pmax + 21O max =2 (37)
The coefficients of equation {37) for the steels investigated are shown in Tables 3-5. For

two selected cases the computational resulls are presented graphically in Figs 2 and 3.
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Table 3, 12HMF., Values of ajand a, coefficients,

Dimensions T(b) = 293K T(b) =473K
ng [mm] al az al 32

Logarithmic temperature distribution

356x36 0.130 67 0.129 58

273x26 0.122 62 0.121 54

273%20 0.091 47 0.090 41

Linear temperature distribution

356x36 0.130 67 0.129 38

273%26 0.122 63 0.121 54

273x20 0.091 47 0.091 41

Table 4. 15HM. Values of a;and a, coefficients,

Dimensions T(b) = 293K T(b) = 473K
ng [mm] al az ﬂl a2

Logarithmic temperature distribution

216x32 0.198 104 0.197 97

216x16 0.090 47 0.090 44

292x21 0.088 46 0.087 43

Linear temperature distribution

216x32 0.199 104 0.158 97

216x16 0.091 47 0.090 44

292x2] 0.083 46 0.087 43

Table 5. 10H2M. Values of ajand a, coefficients,

Dimcnsions T(b) = 293K T(b) = 473K
ng [mm] a[ az al az

Logarithmic temperature distribution

267x40 0.191 94 0.190 87

178%26 0.185 92 0.184 85

419x20 0.054 27 0.054 25

Linear temperature distribution

267x40 0.191 94 0.190 87

178x26 (.185 91 0.185 84

419x20 0.054 26 0.054 24
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Conclusions

The paper was aimed at evaluating the applicability of the kinematic method (the
incremental collapse criterion) to determining the plastic shakedown range in thick-walled
tubes operating under cyclic pressure and temperature conditions,

A concept of the method was presented together with a complete solution of the considered
case for the logarithmic temperature distribution across the pipe wall thickness with an
account taken of the temperature-dependence of material's yield point (13,14). A similar
solution was found for the linear temperature distribution.

Values of the coefficients ajand a; of equation (37) were determined by assuming actual
properties of the materials and dimensions of the pipes.

It was found that the discussed differences between the lemperature distributions had no
significant effect on plastic shakedown parameters, i.e. the corresponding coefficients in
equation (37) assumed the same values (see Tables 3-5).

In all cases the real service conditions (pressure and temperature of the internal wall T¢a)
were found to be below the parameters of plastic shakedown calculated for insulated pipes
with the external wall temperature of T(b} = 473K. In almost all cases the calculated
parameters proved, however, to be too low if we assumed T(b) = 293K (see Figs 2 and 3).It
is evident therefore that the actual external wall temperature must be taken into account.

By proving that the presented computational method is sufficiently reliable we were in a
position to state that service conditions of all nine pipes were properly set and that the

plastic shakedown process could take place.
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