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ABSTRACT: In this paper, an energy method is proposed to siudy the full elastic-plastic field of a
tensile crack. A statically admissible stress field is established by developing an expansion of the
stress function in separable form. The unknown parameters are determined by minimizing the
complementary energy af the structure. The resulls obtained by this method are compared with the
Jine finite element analysis in previous literature. This method shows some advantages for studying
the elastic-plastic cracks, in the capacity to find out an algebraic expression of the stress field
connecting the plastic near-tip field to the elastic far field, in the highly accurate represemation of
the full elastic-plastic field surrounding the crack-tip and in the economical calculation, etc.. This
method is also used to evaluate the amplitudes in the analytical asymptotic expansion. The resulls
show that even the four-term analytical solution can not describe the near- tip for some loading cases.
More higher order terms are needed. In these cases, the present solutions may be more advantageous
in engineering applications.

Introduction

The asymptotic behaviour near the crack tip has been well understood since the
publication of Hutchinson [1] and Rice and Rosengren [2]. They showed that the asymptotic
fields close to the crack-tip, known as HRR solution, could be described only by a single
parameter for material showing a power-law hardening stress-strain response. This
parameter was a path-independent line integral (J-integral) developed by Rice {3]. After-
wards, the numerical and experimental works of Begley and Landes [4] have demonstrated
that the HRR solution was a good characterization of the near-crack-tip stress and strain
fields. But in certain cases, the original HRR singular field significantly deviates from the
fine results of the finite element solution as demonstrated by Shih et al. [5].

To improve the accuracy of the single parameter solution, multi-parameter solutions
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have been described by several authors. Li and Wang [6] suggested to use a second
parameter, which is the magnitude of the second term in the expansion of the HRR solution,
together with the J-integral in the fracture criterion. O'Down and Shih [7] suggested to use
a hydrostatic stress, @, as the higher order term for engineering applications. Xia ef al. [8]
developed the higher order asympiotic fields which were taken out to 4 or 5 terms. Similar

studies were carried out by Yang ef al. [9). They found that two parameters, J and Ay ,

control at least three terms in the analytical asymptotic expansion and suggested to use
them to characterize the crack-tip stress field. Recent study by Wei and Wang [10] showed
that the J-(2 solution is suitable for most specimen geometries from small-scale yielding to
large-scale yielding. However, for cracked bend bar specimens from medium-scale yielding
to large-scale yielding, the J-Q two-parameter solution will deviate gradually from finite-
element solution.

It is reasonable to think that the development of higher-order terms in an elastic-
plastic crack tip solution of HRR-lype will give a more accurate asymptotic stress field.
However, the amplitudes in the analytical expansion can not be self-determined except that
of the first term under small-scale yielding conditions. The convergence of such an
approach on a full elastic-plastic solution has not been explicitly &emonstrated so far.
Consequently, the complete elastic-plastic solutions for mode I crack are highly needed.
Edmunds and Willis {11-13] have developed a matched asymptotic expansion method to
s.tudy the full elastic-plastic stress fields for the mode III and mode I cracks in elastic-plastic
. materials. The linear elastic fracture mechanics was extended into the non-linear regime.
“The advantage of this approach is that the full elastic-plastic stress field can be described by
an expansion of finite terms even though the HRR singularity did not appear in their
results.

In this paper, we iry to describe the full stress field of an elastic-plastic crack by an
approximate energy method. By proceeding a few simple matrix operations, a statically
admissible stress field has been established to connect the plastic zone near the crack-tip to
the elastic far field. The undetermined parameters have been adjusted by minimizing the
complementary energy of the structure. The results obtained by using this method for values
of hardening exponents n=3 and 10 have been verified by the finite element calculations.
The comparison shows that the present method gives satisfactory accuracy not only in the

near crack-tip zone, but also in the far field region.
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This method can be used to determine the amplitudes in asymptotic expansion which
are usually estimated by matching the truncated asymptotic solutions with the results of the
finite-element modeling at a few points specially chosen. It is clear that this "point
matching" technique needs a rationalization, because the values obtained by applying this
technique to a truncated solution are only an approximation of the "true" values.

In this paper, the amplitudes in asymptotic expansion are examined by using the
present variational method. It is shown that this method can provide quite accurate values of
the amplitudes in analytical solutions. The "point matching” technique is also examined. It
is observed that this technique could fail in certain cases. The results show that the
amplitudes calculated by these two methods may be quite different. In some cases. even the
four-term analytical expansion can not reproduce cormectly the stress field in the vicinity of
the crack. In these cases, certain approximate solutions, such as the J-Q theory or the full
field solution proposed in the present work, may be more advantageous due to their

accuracy and simplicity in engineering applications.

General Formulations

We suppose that far enough from the crack-tip, the elastic singularity dominates the
stress and the strain distribution. The elastic far stress field (the outer field) under mode I
loading can be described, for example, by the first &+1 terms of Williams' [14] expansion

of the stress function, namely:
2~ 25 k43)2
0, =G ,,©0)+ @)+ +r%VG @) (n
where 7 and @ are the polar coordinates whose origin Is the crack-tip and @ _,(6),

ﬁ el ©), ... are angular dependent functions which have been determined analytically by

Williams [14] . In the plastic zone, the constitutive behaviour of the continuum can be

described by the Ramberg-Osgood's stress-strain relation, namely:

-1

g, =1tV oW s (0 5 @)
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where €, arc the strain components, 5,; are the deviatoric stress components, E is the elastic

modulus, v is Poisson's ratio, Sij is the Kronecker deita, o is a material constant, n is the
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hardening exponent, o is the yielding stress, and G is the Mises equivalent effective
stress defined as follows:

O = (372 533 5) 12 3)

The first two terms of (2) represent the elastic deformation, and the third term

represents the plastic deformation, which can be neglected for rather large distances from

the crack-tip. Froin (2), Hutchinson [1] and Rice and Rosengren [2] showed that the stress

field near the crack tip (the inner field) can be derived from the following expansion of the

stress function:
O =r"@,0)+ 7§, @) 4rF 0)+... (@)
where §,(0), ¢,(0), . arc angular dependent functions. sg , 51 ... are undetermined

exponents and sy <5< LI e For more convenience the first p+/ terms in (4) are

taken into consideration in this work.

Between the inner siress field and the outer one, there must exist an intermediate
stress field connecting them continuously, To connect these two siress fields, a statically
admissible stress field has been established in this work, the undetermined parameter can be
adjusted by minimizing the complementary energy of the structure.

We know that the first term of (4) corresponds to the HRR solution. The angular
distributions of the higher order terms in {4) can also be developed by analytical approaches
(In general, the magnitudes of higher order terms in (4) can not be self-determined by these
approaches). If the first m+1 terms of ¢ are supposed known , the stress function ¢ can be

wrilten in two parts:

& =[r°g,0)+r @)+ 4r"G, O] +[rf,,,©)+ r o @ 4170 0]
= {r M{§, )+ {n}H{¥F, ) )
where '{r,} ={ro B it () =1 6,0) §,0)... 6,0

and {r2}= { ’J"H-l rgm+2 ’Sp]t’ {‘i}?,} ={ (‘ﬁmﬂ(e) ("ﬁm+2(e) 6p(e)}t

If §,8), ,00), .. and §,(0), ¢,,(0), ... are supposed to be approached by

polynomial functions of order g,
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equation (5) can be rewritten as follows:
o= (r }[A{O}+({r,}14,]{0} W)

where [A l]'is a constant matrix which can be determined by polynomial approach (6) and
[A 1]=[a‘.j] (i=0,1,....m; j=0,1,....q);
[Az] is a unknown constant matrix and [A2]=[aij] (i=m+Lm+2,..,p; j=01,...q);

{O}=t106 6> ¢%.
Similarly to (7), the stress function of the elastic far field (1) can also be developed as

follows;

¢.= {r;}/[B]{O} ®
where {1y} = { P92 12 .. a2yt
[B] is a coefficient matrix and can be determined in polynomial approach (6) and
[B]=[b,-j] (=0,1,..k; j=0,1,...,q).

The unknown constant matrix [Az] can be obtained by considering the continuity

between the inner and the outer fields at large distances from crack tip. One can suppose
that at a circle =R far enough from the crack tip, the inner elastic-plastic field coincides
with the outer elastic one. Under this condition, the stress function of the inner field ¢ and
its partial derivatives with respect to r and 8 of different orders musl equal to, ai r=R , their
corresponding quantities of the outer field. It is clear that €2 is the minimum order o
ensure the continuity of all the stress components. If more computation accuracy is required,
higher order continuities are needed. In fact, if the stress functions are assumed to be

developed in polynomial form as in (7) and (8), one can easily demonstrate that all the
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continuity condilions above-mentioned can be satisfied only if the corresponding partial

derivatives with respect to r are conlinuous, i.c.

o0p,(R) dp(R) %, (R) 2%¢(R)
R — (p R € s £ = e—— e e
P R)=0R) dr or or’ or’ @

Since the dimension of the unknown constant matrix [Az] is of (p-m,g+1}, a continuity of

order p-m-1 is sufficient to determine [Az]. This condition leads to the following relation

by introducing (7), (8) into (9):

[R,][A,]{O}= [R;][B]{O} - [R,][A,]{©} (10)
d d2 4N !
where : [R,] = {1 o dr(fr—m—l)} {r=R}

[Rz] =

2 —m—1y 1 ¢
{1 d & & ”} (r(r=R)}!

dr dr? drtrm"

dr drt drtrmh

- Y
d d‘Z d(p 1)
[R;] = {1 — {1(r=R}!
The unknown coefficient matrix [Az] can easily by found be resolving (10):

[A,1=[R, "1 [R5][B]- [R,][A,]) (1
By substituting (11) into (7), the stress function of the inner field can be found. The stress

field derived from the stress function constructed this way satisfy the equilibrium equations

and can connect the near crack-tip field to the elastic far field, whatever the exponents s;.

So these field can be considered as statically admissible.

To determine the p-m exponents s; , the theorem of the minimum complementary

energy is used. The complementary energy U . of a structure which obeys the stress-strain

relationship defined by (2) for either plane stress or plane strain is:
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c o+ Gkk2+ b= dQ (12)
3E 65 Em+\o,
Q
The integration is calculated in the circle area Q e r < R The variation of the statically

admissible stress can be completed by varying the exponents (spyy . 542 - sp). The
problem then consists in finding out the parameters (syyq. /. Spp2 - Sp)  so that the

variation of the complementary energy of the structure becomes zero, or in optimizing the

parameters (Sp,; 4 J, Sp+2 - Sp) so that the complementary energy becomes stationary and

minimum The minimization problem can be solved by using numerical methods which will

be discussed in the next section.

Numerical Procedure

The boundary conditions of the statically admissible stress field thus determined are
the elastic solution for the far field and the HRR expansion for the near crack-tip field as
indicated before. The angular distributions of these stress fields are needed to be
approached by polynomial functions. This approximation can be highly accurate and does
not present any numerical difficulty,

Figure | illustrates the comparison between the analytic angular stress distributions
and their polynomial approximations. One can note that the accuracy of this numerical
approach is quite good wheiher for the elastic solution or for the HRR solution.

Gauss-Legendre numerical integration method is wused to calculate the
complementary energy in the area r<R according to (12). The minimization of the
functional (12) can be resolved numerically. The numerical procedure used in this work is
the downhill simplex method. This method is easy to use in finding the minimum of a
function of mere than one independent variables. With this method, the exponent vector

{$m+1s Sm+2 - 5p} can be found. The convergence is guaranteed by this method for any

initial simplex guessed. However, it is possible that a local minimum point is found. So it is
preferable to proceed several downhills with different initial simplexes. The optimal point

can be chosen after survey of the results.
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Fig. I: Polynomial approaches of {he analytical stress fields. The continuous lines represent

the analytical solutions; the open circles represent the appreaching functions. .

By substituting the parameters obtained (s;;4 7, Sy 42 - sp) into (11), the unknown
coefficient matrix [A?.] can easily be calculated. The stress field connecting the far elastic

field is then completely defined,

Full Stress Fields

In order to verify the energy method developed in the preceding sections, we carry
out detailed calculations of the full stress field under small-scale yielding conditions. We
consider the near-tip region of a mode I plane strain crack in a homogeneous elastic-plastic
material. The necar-tip ficld is supposed dominated by the HRR solution. The stress
corresponding to the first term of expansion (1) is applied to a remote circular boundﬁry.

The values of the material properties used in the calculation are E/cg=300, v=0.2, and

0=0.1. The computations are carried out for two different values of the hardening exponent

n=3 and 10. The numerical results obtained by the present iethed have been compared with
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those of the fine finite element modelling. We compare our results essentially with those
obtained by Sharma and Aravas [14].
To study the influence of the radius of the integration area on the accuracy of the

method, different values of R are chosen, Table 1 lists the values of the exponents 51 57 ...
5 obtained for n=10 and for different vaiues of R from 45J/a() to 600J/0g. The analytical
values of s 1,52 - 5p obtained in [8] and [9] are also listed for comparison. Table 1 shows
that with a small R, few €xponents sj are needed to describe the near-tip stress field, the

exponents of higher orders become very large and have nearly any influence on the near-tip
stress distribution . However, if it is of interest to study the stress field far away from the

crack-tip, a larger value of R can be chosen. In which case more exponents s; must be

calculated to ensure satisfactory accuracy. detailed calculations demonstrate that for a large
range of values of R, the results calculated by the present method are very stable for both
niear-tip and far stress fields.

Figure 2 shows the variation of the stress components for n=3 and [0 along the radial
lines ©=41.3°. The finite element results obtained by Sharma and Aravas [14], when using
the same malerial parameters, are plotted for comparison. The HRR solution and the elastic
solution are also illustrated in the figure. Figure 3 shows the angular variation of the stress

components for n=10 at three different radial distances, namely r/(JIO'O) =0.8, 2, and 5. The

HRR solution and the results of the finite element solution are also illustrated.

Figures 2-3 show that the results obtained by the present energy method fit well with
the results of the fine finite element analysis in the whole region considered, whether for the
near-tip asymptolic field or for the far elastic field. This demonstrates the high accuracy of
the energy method applied in the elastic-plastic crack problem.

If the present method is able to give the same accuracy as that of the fine finite
clement analysis, its main advantage is that an algebraic expression can be obtained to
describe the stress field of the whole elastic-plastic region around the crack-tip. It makes it
all the easier 1o select the criteria which characterize the behaviour of the fracture process.

It is observed that the exponents obtained by the present energy method are much
higher than those deduced from the analytical approaches [8,9]. This means that the
expansion in present work converges more quickly to the full solution than the analytical

expansion without loose of accuracy. By taking the HRR solution as the known near-tip
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boundary condition, only 4 to 7 terms are sufficient to describe accurately the full elastic-
plastic field. Another advantage of this method is that all the amplitudes can be self-

determined. This is not the case in the analytical approach.

Table 1: Exponents for different radii of integration area (n=10)

RI(J/Gg) 50 5] 52 53 54 55 56

45 1.909 241 45 80 - - - p=3
78 1909 258 322 70 - - - p=3
130 1909 259 2700 60 - - - p=3

220 1909 272 278 291 - - - p=
1909 266 287 300 50 - - p=4
360 1909 270 279 319 341 - - p=4
1.909 262 298 314 324 60 - =3
600 1909 276 283 295 307 450 - p=3
1909 271 287 297 314 514 30 p=6

analytical 1.909  2.06977 2.2304 2.2695
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Magnitudes of the Asymptotic Expansion

The magnitudes in the analytical asymptotic expansion can be calculated by using
this method without difficulty. It is just needed to take the magnitudes as unkown constants
in the minimization of the complementary energy.

In this work, we carry out detailed calculations to determine the magnitudes in

asymptotic expansion. The values of the material properties used are: E/Gp=300, v=0.3 and

o:=1. The computation are carried out for two hardening exponents n=5 and 10.

The outer field: Consider a boundary layer formulation in which the remote tractions are
given by the first two terms of the linear elastic solution. They are the well known K stress
and T stress defined by Rice [16]:

K

<Pe=ﬁ

1 1 3 T
Y2 cos—0+—cos——9)+— *(1-cos 26 13
4 ( 20 F3e0558 [+ )

In the present work, the loadings applied at the circle boundary include the following

combinations:

or S,

_Oyvr - _
K= 2 - T=0. K= 2 T=-O.560'0. and K= 2 , T=034GO

3 H

ey

The inner field: The solution of Xia et al. is used in this work. The first four terms of the

asymptolic expansion of the stress function for n=35 and 10 can be written as follows:
0=K1*101(0) + Kpr292(0) + Ky (KoK 1) ©5343(0) + K4r%%048)  (14)

Finite-element model:  Each calculation of such an approach are verified by a finite-

clement modeling. The corresponding  geometries, loadings and material properties in
energy minimization approach are reconstructed by finite elements, A general-purpose
fimite-element program developed by Centre d'Energy Atomique de France, named
CASTEM 2000, is used in the present study.

First, the four-term solution of Xia et al. is included in the stalically admissible full

stress field for n=10. The three independent amplitudes J, K> and K4 are calculated by the

minimization of the complementary energy of the structure., Knowing these amplitudes, the
full stress field and the differently truncated asymptotic stress fields are obtained. Fig.4

shows these stress fields in the vicinity of the crack tip, The full field solution and the
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finite-element solution are also illustrated for comparison. In order to save space, only the

stress components Gy, arc plotted, circumferentially at distances r~2 to 4J/g, and radially

ahead of the crack tip. The results of the other stress componenis will give same
conclusions. From Fig 4, one can note that the full solutions approach best the finite-
element solutions, However, the two-term and three-terms solutions deviate significantly
from the full stress solution. In general, the four-term solutions agrees well the finite-

element solutions in the near-tip region r<5J/oq.
The same approach is made for n=5. The components Gy, of the different stress

fields are shown in Fig.5. Fig.5 shows some different results from those illustrated in Fig.4.
From Pig 5, one can note that under certain loadings, none of the above-mentioned
truncated asymptotic ficlds approaches the finite-clement solution in the vicinity of the
crack tip. This means that in certain cases, even the four-term asymptotic solution can not
reproduce adequately the stress field near the crack tip. More terms in analytical asymptotic
solution are needed.

For comparison, the "point matching” technique is also used in this work. The

matched point was chosen at (r=2J/6(,8=0). The stress component G, is used to determine
Ko in the three-term asymptotic solution. The stress components Oy and G are used to
determine K7 and K4 in the four-term asymptotic solution. However, it is found that this

technique is not always applicable when matching the results of the finite-element analysis.
For example, the truncated four-term solution for n=10 of Xia et al. can match the stress
field of the finite-element modeling successfully, however, this technique fails with the
truncated three-term solution of the same authors. On the contrary, the point matching
works well with the three-term solution of Yang ef al., but does not with their four-term
solution. This "anomaly" leads to two questions: first, are the truncated asymptofic solutions
unique? second, does the "point matching" technique can be used to determine the
amplitudes of the truncated asymptotic solution in general cases? Anyway, clarifications

will be necessary for the analytical asymptotic solutions to explain such an anomaly.
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In this work, two methods, the virtual crack extension method itmplemented in the

464




finite-element program CASTEM 2000 and the present variational method, are used to
calculate the value of the J-integral. Based on the three-term and four-term truncated
analytical solutions of Xia et al. , both the point matching method and the variational

method are used to calculate the parameter K7 and Ky4. These approaches allow (o estimate

the accuracy of the point matching method and the variational method,

Table 2: Amplitudes in analytical asymptotic expansion

loading I K> K4

conditions *VCE  *VM *PM3 *PM4 VM PM4 VM
(n=10}

T=-.56aG0 2742 298 - *— 0.061 0013 1.81 1.33

T=0 1.853  2.03

0.024 0017 051 0.43

T=340q 1.837  2.02 - -0.006 0002 022 0.17
(n=5)

=-.56002.307  2.16 0.179 022 -0.073 -0.63 4.06
T=0 1.817  1.89 012 008 022 060 -248
T=340p 1.795 1.85 0.094 0018 035 071 -6.68

*VCE: virtual crack extension method; *VM: variational methed; *PM3: point matching method with 3-term

analytical solution;*PM4: point matching method with 4-term analytical solution; *—: point matching method

fails

Tabie 2 provides the values of J, K2 and Ky calculated for n=5 and 10 and for

several boundary layef loadings. Table 2 shows that the values of J-integral calculated by
the variational method agree well with those obtained by the virtual crack extension method
in finite-element analysis. The differences between J obtained by using these two methods
are within 10% for #=10, and 5% for n=5. These represent about 1% of uncertainty in the

amplitude of the first term. The amplitude X 2 can not be obtained for #=10 by matching the
three-term solution with the result of FEM, For n=5, the values of K obtained by using the

three-term solution are somewhat different from those obtained by using the four-term

solution. This means that the amplitudes of the lower-order terms determined by the point
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matching method may change when adding some higher-order terms. One can also observe

that the values of Ky and K4 provided by the point matching method agree approximately

with those obtained by the variational method for n=10. However, for n=5, the amplitudes
obtained by these two methods are quite different.

It is to note that the values obtained by applying the point matching technique to a
truncated asymptotic solution are only an approximation of the "true" values. By using this
method, the amplitudes of lower-order terms change when adding or removing a higher-
order term in the expansion, The variational method allows to bypass this difficulty. In this
method, the amplitudes in analytical solution are optimized by the minimization of the
complementary energy of the structure. Therefore, this method can be considered as a "full
field matching " method. It is evident that the "true" amplitudes make the complementary
energy of the structure minimum. Moreover, following factors show that the variational
method can provide quite correct values of the amplitudes:

1: the values of the J-integral , which is the amplitude of the first term in the analytical
solution, obtained by using the variational method agree well with those obtained by using
other existing techniques;

2: the modifications of higher order fields do not influence much the results of the
amplitudes of lower order fields;

3: the stress ficlds calculated by using this method agree well with those existing in the
structures under all Joading cases and for all power-law hardening materials;

4: the amplitudes converge always to the same values when different initially guessed

amplitudes are used in the minimization procedure of the complementary energy.

Conclusions

An energy method is proposed in this paper to describe the full elastic-plastic stress
field of a plane strain mode I crack. By establishing a statically admissible stress field and
by minimizing the complementary energy of the structure, an algebraic expression can be
found to represent the full stress field near the crack tip. This method is pretty easy to apply
to the elastic-plastic crack problem. The numerical results show that the present method is
highly accurate and can be used as an alternative to the fine finite element analysis In this

work, the amplitudes in analytical asymptotic expansion of a mode I elastic-plastic crack are
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calculated by using both the variational method and point-matching method. It is found that
the point matching technique may fail in certain cases for different versions of the truncated
analytical solutions. However, the variational method can provide convergent amplitude
values in analytical expansion. The results obtained by using these two methods are quite
different in some cases. It is shown that even the four-term analytical asymptotic solution
can not reproduce adequately the near-tip stress field. More terms in asymptotic expansion
are needed. In this case, some approximate approaches may be more advantageous in

engineering applications.
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