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ABSTRACT: Local stress field near tip of a plane crack terminating at a bimaterial interface is

considered. Instead of the

ideal contact” interfacial conditions, usually done, we have introduced

an adhesive interlayer of infinitesimal thickness between the materials, and we model it as a thin
elastic region the widih of which changes according to an exponential law. It is shown that the
geomelry of the thin region influences essentially the stress not only qualitatively (the character of
the stress singularity near the crack tip), but also quantitatively {the increase of a number of singular

terms in the asympiotics),

Notation
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- components of displacement vector 4 in j -material
- components of stress tensor ¢*” in j -material
- vector of tractions along boundary I

- characteristic damage segment of j -material

- components of diagonal matrix T defining mechanical

properties of nonideal interface
- parameter defining geometry of intermediate zone

- Generalized Stress Intensity Factors (SIF) for Mode I, Mode 11,
Mode III, respectively -
- exponents of the main singular terms of stress under Mode m,

{(m=1, 2, 3} for nonideal [ideal] interface, respectively.
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Introduction

When strength of a nonhomogeneous body with a crack is investigated two different
problems should be solved. The first one is to obtain displacement and stress fields by a
convenient model of the body taking into account its geometry and physical feature of the
materials. The second problem is to analyze the obtained strain-stress distribution near the
crack tip by an appropriate fracture mechanics criterion.

Both the problems are connected themselves. Thus the first problems, as a rule, are
discussed in the case of so-called “ideal contact” conditions. They consist of the continuity
of displacement and the traction vectors along the interface. It is known from papers [18,19]
that in such problems the exponent of the stress singularity near the crack tip, is not equal to
-0.5. Moreover, in the case of an interfacial crack, the model of the “ideal contact” leads to
such inconsistencies as oscillating character of stress and strain components and
overlapping of the crack surfaces in vicinity of the crack tips; both unacceptable from the
standpoint of physics. Besides, the usually applied Griffith-Irwin's criterion cannot be
directly employed. For extensive literature on this topic see [4,14].

To eliminate such inconsistencies, in the case of an interfacial crack a modification of the
contact conditions along the crack surfaces near the crack tip has been proposed [4].
Another way to investigate the problem when the crack tip is situated on the bimaterial
interface is to use so-called “kinked crack approach” [7]. A third way i§ to assume that there
exists a thin it interfacial zone, mechanical properties of which vary between the different
materials [1,6,10]. Then the fracture mechanics analysis can be done in terms of the stress
intensity factor (SIF) with Griffith-lrwin's criterion.

In contradiction to the other models, the “intermediate region” allows us to take into
account the influence of the real adhesive region not only at the stage of strength analysis by
the theory of adhesion [3], but also at the stage of finding the displacements and stress fields
near the crack tip.

Let us discuss now models of “nonideal contact” along the interface being under

investigation in this paper. In Fig.l as an example a bimaterial rod with a plane crack
terminating at the interface is presented in the Cartesian coordinate system x.,y..z. (OZ, -

axis coincides with the rod axis). We assume that characteristic thickness &, of the adhesive
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intertayer between the different materials is lesser than length /, of the crack and than

characteristic size of the solid D, , i.e. h, << |, , << D,,

If noniocatl strain-stress state of the solid is of interested {outside of the neighbourhood of
the crack tip), then using the “ideal contact™ interaction between the materials is justified.

However, if we are interested in the local fields near the crack tip, then the “ideal contact”
conception is not satisfactory. Let us normalize variables X ¥e:Zo by the value

d, =min{d,,d} (d,, d, are characteristic damage segments of the materials (see [13,16])
in the foliowing manner: x=x, /d,,y=y./d.,z=z/d. . It can be naturally assumed that

d.<< [,. Then in the variables x, y, z we obtain the respective modelling problem in the
bimaterial infinite space with plane semiinfinity crack terminating at the adhesive layer of
the characteristic thickness h=#h, /d,. In this modelling problem we are interested in the
displacement and stress fields on the unit distance from the crack tip. Thus if the value of A
is of the same order or higher (# ~ Lor 4> 1) then the adhesive layer has to be considered
as a separate structural element with its own geometry and specific mechanical properties
[1,6,10].

oy

Fig.1 Bimaterial solid with plane crack terminating at nonideal interface

In the opposite case, when the thin interlayer is of infinitesiral thickness, the influence of
the adhesive layer should be taken into account in the other way. It is clear that even under

assumption h << |, the “ideal contact” model cannot satisfactory. (It is enough to imagine
that the shear modulus 1, of the elastic adhesive layer is far less than the moduli of the

materials being in contact).
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In this case (h<< 1) the intermediate zone can be considered as a thin elastic inclusion.
Usually we do not have any additional information on exact form of the adhesive interlayer.

To investigate an arbitrary geometry of the intermediate zone we assume that the thickness
of the elastic inclusion near the crack tip is described by the relation: h(r)=hr",

(0<h<< |, 0< o < oo} where ris a distance from the ¢rack tip along the interface, but A,

o are dimensionless values. The corresponding square region near the crack tip from Fig.1
is presented in Fig.2a-Fig.2d depending on the value of parameter c. Herep,,[t, and

v, v, are the shear moduli and Poisson's ratios of the elastic materials being in contact.

Applying a standard technique for thin inclusion (see [2,8]), we can integrate respective
equilibrium equations of the interimediate zone by the parameter determining normal

direction to surfaces of the thin region. Then the following interfacial conditions arise:
[o, ]“. =0, ([u]- r“‘to‘n)lr =0 0

along the nonideal bimaterial interface. Here [u], [o,] are jumps of displacements and
tractions, respectively, along the interface, while 1 is a diagonal matrix of the components
[2]:

T=hin,, T,=hIE, t,=hip, 2)

where E, and u:,)_, p.;z are the Young's and the shear moduli of the elastic inclusion.

Conditions (1) can be considered independentiy of an assumed model of the thin interlayer.
Then parameters T, >0 should be experimentally determined.

Such an approach allows us to investigate different forms of the intermediate zone near the
crack tip. Thus, if1 =0, we have the usual “ideal contact”. When o.=0,71#0 thereisa thin
interlayer of constant thickness between the materials (Fig.2a). The case where O <o <1

can be interpreted as a thin adhesive zone with a damage near the crack tip (Fig.2b).

Whena = 1, the materials are contracted by the thin wedges (Fig.2¢). Finally, 1< <eo

can represent an “almost ideal contact” between materials near the crack tip (Fig.2d).
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Fig.2 Geometry of the interfacial zone near the crack tip

As it is known, local fields near the tip of plane crack terminating normally at the interface
are described in principal by combination of the Mode L, I, III states. We shown that in the

most cases of nonideal interface (o> 0), the corresponding asymptctics can be written like

this:
m=} K .
u,(r,0) =w, +ZY—’”-L""’ @™ +0(r"), r—0, (=r02),
s m=] Im (3)
0y (18) = Y K& @O +00"™"), 10, (kI=r8,2),

m=1

where £ "(8),g5(6) are cyclic functions, and , 6, 7 are polar coordinates centered at the
crack tip. Thus, for homogeneous material we have Wu=0, ¥,=%,=7,=05 vy =1,
but when crack terminates normally at the “ideal” interface: wu =0, ¥, =7, 27, €0},
¥" =1. In both cases, functions £7(8), 25" (8) are specified in any text book on fracture
mechanics, e.g. |2].

Below it is proved that local strain-stress state depends essentially on the type of the
nonideal contact interface. Moreover, we show that not only the quaﬁtitative madification of

the asymptotics (change of the value of singularity exponents), but also the qualitative one
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(increase of a number of singular terms in the asymptotics) can arise. In the last case, v is
less than I, and the term O(r""‘)contains a number of singular terms of stress. Besides,
situations can arise0< o<1 when wy, # 0 (the crack surfaces differ themselves near the
crack tip). Finally, for o =0, logarithmic singularity of stress only arises.

Although in the considered models stress singularities are not equal to -0.5, such fracture
mechanics criteria as the critical crack opening criteria [5,9,17] or the effective stress
criteria [13,15,16], allow us to investigate arbitrary displacement and stress fields taking

into account the corresponding {elastic, plastic) properties of the materials. Due to any of
the mentioned criteria, the value of K, d7- /'Ym has to be taken into account in fracture

mechanics analysis, instead of the value of SIF K, . Here the small parameterd; of length

dimension has different physical interpretation in frame of each of the criterion. The

corresponding investigation is not a goal of this paper.

Problems Formulation

Let us consider modelling Mode m problems (m = 1, 2, 3) for a bimaterial plane with a
semi-infinity crack terminating perpendicularly at the interface. We shall seek solutions of

the problems satisfying equilibrium equations and the Hooke law in each of half-
plane(y >0,y <0). Along the crack surfaces (x=0,y<0) the corresponding exterior

boundary conditions are prescribed:

Gf,"’lez_,,w, =g, (Ne,, & =(L00),...e; = (00.D). ®

We assume that functions g, (r) are sufficiently smooth and vanish at zero and infinity

points (for example, g,, € Cy'(R,)), then any singularities of the solutions arc connected

with the interior properties of the problems only. In view of symmetry of the problems

geometry, we can conclude that the following additional conditions arc satisfied on the
crack line ahead (x =0,y >0):

: -0 o =

ModeT : 5"\, =0s Orgpuns =0

ModeI1: %, =0, 06 jourrz =0 &)
Mode IIl: ~ #,"q_, =0
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Along the nonideal bimaterial interface (y =0,x > 0) interfacial conditions (1) are assumed

to be true. We shall seek the corresponding solutions of problems (1), (4) and (5) meeting

with the following conditions at the singular points:

u=0(r"), c=0(""), ro0,

u=00"""), a=00""""), ro e,

(&)

where unknown constants 9, ¥_(m) >0, Yor Yulm} >0 (B, +9_(m)>0) depend on

the values of mechanical parameters and the strain-stress state (Mode I, IT, TI1). They will

be calculated while the problems are solved.

Solution to Mode III problem

Applying the Mellin transform technique we obtain functional equation:
Typa(s+ o= 1) + F(5) py(s) = Gy(s), 0

with additional condition p,(0)=-g,(0). Here an unknown function P;(s) and known

function g,(s) are the Mellin transformations of the tractions along the interface and the

crack surface, respectively:

Pi(S) = [0 1.8y rds, By(s) = [ g,(rdr,
)] 1]

which are analytic in the strip —y, <Res<y_(3) in view of a priori estimations (6).

Besides, the following notations are introduced in (7):

F;(s):_z(lc——CO.STCS)-, G3 )= -83(3) ) Kz”’ﬂ““‘l, EJZH'UT;-\'
(1-x)ssinms ssin{ns/2) B+,

In the case of the “ideal contact” (T, = 0), solution of equation (7) is found in a closed

form, and is well known. Thus, function p,(s) is analytic in the strip |Res|< @, , and has
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simple poles at points s =+w,, where @ € (0,1} is the first zero of the function F,(s) which

is the nearest to the imaginary axis. Hence, it can be concluded that
Y1=Y.(3}=0.03) =4; =0,.

In case o = L, equation (7) is also solved in a closed form. Function p,(s) is analytic in the
strip [Res| < @3(%,) , and has simple poles at points s = +w)(T,) . Here ,(T,) € (0,1) is the

first zero of function F,(s)+7,. The corresponding graphs of the values of w}(T,) are

presented in Fig.3.
¥3 = wj(Ta)
1
__________ 7 = 1000
08 ~ - 100
06 Ny |10
. ~\ \=\ vl o= 01
: \\\ N 0.01
02 s '\__\‘\\\\\ }Ag/ﬂi

Yo 102 0" 10? 7 161

Fig.3 Graph of parameter v, against T, = T, for . =1.

In case o €[0,1), equation (7) is valid in the strip U< Res<,, at least. Hence, function
py(5) should be analytic in the strip o—1<Res<®,, and has simple poles at points

s=a—1 (a#0) and s=w,. But in case o0.=0 there exists a double pole at point

s=—1. In case o>1, we can conclude that equation (7) holds true in the strip
—w, <Res< 0. Hence, function p,(s) has simple poles at points s =-m,and s=0—land

is analytic in the strip —m; <Res<a—1.

It can be proved that functional equation (7) has unique solution in both cases. They can be

found from some singular integral equations with fixed point singularities. In case a=1,

the corresponding results have been presented earlier [Li].
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Asymptotics of the solution for Mode 111

Now we investigate asymptotics of displacement u (r,0) near the crack tip. The

corresponding relations for stress can be found according to Hooke law:

N W
o =y, du, w_, ! ou,
= ! or o ‘r 90

When o =1, in paper [11] asymptotics is obtained:

4 (r8) = €, - CE'rsing+ 0("™), r 0,

u"(r,0) = —%”'_i[(n— 20)sin® +2(C, + Inr)cos8]+ o), ro0, 8

1T
P (r,0) = O(r™), r— o,

with some constants C|, C,.

For all remaining cases (o > 0), the corresponding relations can be rewritten in 2 common
form like this (¢p=n/2-0):

u =C, + K:; i ctg%cosh(n -0} +00F™), r—0,
nia

u:" =K, (P-I'Ya)_l P siny, b+ O(rﬁ)' r=0, ®)
4" (r,0) = C. + 007D, ul(r,0) = O "D, 'r = <o,

where the constants from a priori estimations (6) are calculated taking into account the
behaviour of function Pi(s):
Ya=1l-a, y.3)=9_,3)=w,, 9,=0, O<ac<l,
Y3 =7 =0.3) =19, =w,(T,), a=], (10)
Y.(Y=l-0a, y,=9;,=w,, 9,(3)=0, l<o<ew
In equations (9), constant K, is calculated by a constant at the corresponding pole of
function p,(s) . Let us note that situations can arise where there is a number of singular

terms of stress near the crack fip (y; <1).
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In Fig.4, a graph of the main exponent of stress singularity (y,—1) is presented with

respect to the value of parameter o.. Besides, a scheme demonstrating a distribution of the
number of singular terms in the stress asymptotics in the neighbourhood of the crack tip is
shown.

- For o = 0, there is not an exponential singularity of stress near the crack tip for any
values of the mechanical parameters |, [L,, T,. In this case, stress concentration appears

only in the domain y >0 (on the crack line ahead), and it has a logarithmic character (see
[11]). In regards to the displacement field, there is displacement discontinuity near the crack
tip along the bimaterial interfacial contact (C, # 1in (8)).

- If o € (0,05] , only one singular term in asymptotics of stress in the neighbourhood
of the crack tip appears (y; 2 | ). Corresponding exponent in interval (-1,0) is v, - 1=-0,
and does not depend on the values of 1, 1, T;.

- For case o e(051), or more precisely oe(o,,0,), (n=2,3,...), where
a, =1-1/n, there are exactly » singular terms in the asymptotics of stress with
exponents: Y,—l=-0, Y5, —1= (+D(1-a)y—1e(-1,0), j=1,..,n (see the diagram in
Fig.4). Moreover, if o — 1, then the number of singular terms tends to infinity n—> o0 ! In
the last two cases (o € (0,1)), the displacement discontinuity near the crack tip also appears
(C, #0in (9.

ag\*zl_% /QI:1-|—ln;_"“11 n=23,.
ri-'l ;-i_‘ four sing. terms
: H | threg sing. terms
vz —1 { Mt -
LAY | two sing. terms _
: ”1 I!: r one sing. term
0 0.5 i 2 —ws ’ EI
C-.u‘g -1t ‘f\ — -
-1t 73— 0
Tq — 00

Fig.4 Stress singularity, and number of singular terms of stress
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- If oe=1 there is on singular term of asymptotics (y,>1) with exponent
Yy~ 1=w,(T,)—le(-1,0,-1) depending essentially on the values of mechanical
parameters W, 1, T,(see Fig.3). Thus, if T, — 0 then v, — 1— , — I, which coincides
with the result for the “ideal contact”. In this case (&t =1) and in the next one (ct> 1) the
displacement field is continuous near the crack tip ( C, = 0). However, it is discontinuous
on any distance from the crack tip along the bimaterial contact in view of the condition (1),.

- For case we(l,2-w,), or more precisely ae{o,,,al), (#=2,.), where
o, =1+(1-w,)/(n—1), there are accurately n singular terms in asymptotics of stress
with exponents: y,-l=w,-1, y;-l=—jla-D+0,-1e(-10), j/~l,.,n (the
diagram in Figd). As above, n— o when ¢ — 1,

- Finally, in case o €[2—w,,), one singular term of stress asymptotics appears

(Y32 1). The corresponding exponent y,—1=@,—1 is similar to that for the “ideal

contact” model, and does not depend on the remaining problem parameters.

Numerical results for SIF and the displacement discontinuity near the crack tip are
presented in the papers [11,12] for different values of the mechanical parameters p,, [,,

T, . In particular, it has been shown that for 0< o < 1, estimations are true:

Cy ~ T3, K, ~ 79, T, -0 (11}
In the opposite case { | < o), the following relation is obtained ( C, =0):

K, =K +0(@@), 1,50, (12)

where K;"" is SIF in the case of the “ideal contact”, but B=f(c) > 0 is some constant. In
particular, (1+w,)=1. Hence, in all of the cases, asymptotics (%) is rebuilt to those for

the “ideal bimaterial contact” when 7, — 0.
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Solutions to Mode I and Mode I1
Applying the Mellin transform we obtain the following systems of functional equations:

Apn(s+a -1+ K, (), (5) =G, (s), (13)

where m = 1, 2 for the Mode 1 and Mode 11, respectively. Here, unknown vector-functions

P.(s) are the Mellin transformations of the tractions along the interface

Po(3)=(84(5,0),8 ,4(s.007. (14)
are analytic in the strip —y,, < Res <y, (m), and should satisfy additional conditions

(0-3,0)", m=1,

0=
Pu® {(":5": 007, m=2.

Vectors G (s) and matrices A, F, (s) are defined like this:

G _ —2E,(s)( scos(ns/2) G _ 28, (s)( (1= 8)sin(ms / 2)
"7 X)) W+ Dsinms/2)) 7 X(s) \scos(ns/2) '

A-?‘3 0 F,(5)= EF, EE—OI X(s)=s[2s> — l+¢
“lo %) »(5) = EF (s)E, =l of (5) = s[25% — | + cosTs].

The corresponding components ¢,(s) of matrix-function F(s) are calculated by the

relations
sinms b ms 25— l+cosms a+b
= ——ctg—, = -
bnlD=35 e el X(s) s
sinws b ms 25s+1—cosws  a+b
=——4—t — =
ba) =yt e 2 X() s

Here dimensionless parameters a, b, T, 4, are introduced like this:
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_ro__

B -4 Ho(l=v)) —
. D. y b= > ¢| ' T,—(a) = * t[(z))
2p, (1= vy) W {1-vy) I-v,

where V) =v, under plane strain deformations, but v;=v,;/(1-v,) under plane stress

conditions.

For the “ideal contact” (A =0), solutions of the Mode I and Mode II are found in closed
forms [18,19]. The corresponding vector-functions P,(5) in (13) are analytic in the strip

]Resl <,, and have simple poles at points s=2w,. Here , e (0,1) is the first zero of the
determinant det F, (s) (det F,(s) = det F,(s) ) which is the nearest to the imaginary axis. So,
in this case we can conclude that for both Mode I and Mode II
Ym =Y} =0 _(m) =9, =w,.

When o =1, systems (13) are solved in closed forms also. Vector-functions P, (5)are
analytic in the strip [Res| <, (T,,T,), and have simple poles at points s=zeo, . Here
o, €(0,1) are the first zeros of functions det'¥, (¥,(57,.7,)=F, () + A(T,,T,)).
Consequently, in this case (0.=1) for Mode [ and Mode Il problems, parameters
determining stress singularity are calculated like this:
Yo = V(M) =B (M) =0, =0, (3,,7,).

Let us note that

det'V, (5,Ty,7,) = det ¥, (5,7, ,7, ) (15)

Hence, exponents @, —1, @, —1 of the stress singularity are different for the Mode I and
Mode II problems! Moreover, as it will be seen below, in this case (o= I) situations can
arise when two singular terms of stress asymptotics exist in contradiction to the Mode III
problem.

Taking into account relation (15) we can present numerical results for exponents of stress
singularity for Mode I only. Exponents of the stress singularity for Mode II problem vy, — |

can be calculated using the value @;(%,,7,) = w](%,,T,).
In Fig.5 - Fig.7 graphs of two first real zeros of function det ¥, (5,7,7T,) belonging to
interval (0,1) and determining parameters ¥\» ¥, in asymptotics (3) are presented. In

comparison with Mode I problem where the first zero m;(f,) depends on two parameters
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T, and u,/H,, for Mode I problem the value of the first zero @(T,,T,) depends on five
parameters: v, v, Ty, T, and }1, f1L,.

Influence of the Poisson ratios v,, v, is shown by the following selections: v, =v, =02 in
Fig.5; v, =0,v, =05 inFig.6, and v, =05,v, =0 in Fig.7.

In each of figures Fig.5 - Fig.7, graphs marked by letters a), b} present two first zeros when
parameters Ty, T, have the same values (T, =7, =7).

Graphs marked by letters ¢), d) correspond to situation when T, =0, but Ty # 0.

71 = wi(7,7) a) 717, 7) b)
O . . . e
_________ 3 1000
06 Yoo s I .
********* -4 = 10 06 s
04 \ —= 01 N
I N oor | 04 .
02 ™Y o N
Ny o/ 1t 02 S
0 \*ﬂq‘_ o = T
0 100 1wt et w0t T R L VR A
71(70.0) d)
T
\\\“
08 \\\.
S ]
06 N
A
0.4 N
0.2 I
0

w1t w1t T

Fig.5 Graphs of parameters
71, ¥ determining the stress
singularity in the case ¢ = 1,
for different values of po/p
and vy = 1 = 0.2,
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Finaily, in graphs marked by letter e) the values of the contact parameters are defined like

this: T, # 0,7, =0. Then only one real zero of function det¥(s,

0,7,) appears in interval

(0,1). As it can be seen from graphs in Fig.5 - Fig.7, behaviour of the first zero in the Mode

I problem is similar to that for the Mode IiI problem. However, the values of

@, (Ty,7,) depend essentially

)
08 §
06 '""'_“""“\}\
oo o\

010‘5 10 10" 1o

1%1 = w’f(fa, 0)

08
0.6
04
02

010'4 102 100 107

10

08 \I'}-
o6 | T N
04
0.2 o

0, -

1'5{‘(?,'?) b)
08 \\\
AN AN
08 \N
N
0.4 .
02 el
Tmaa L
100 100 107 1° T 10t
7;('713,0) d)
N T I —
NS
08 R
N
06 \
N
0.4 NNl
02
0 — |
0% 100 102 10° 7910t

Fig.6 Graphs of parameters
71, 77 determining the stress
singularity in the case o = 1,
for different values of Mo/
and »y = 0.0, = 0.5.
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not only on magnitudes of Ty,7,, but in the most degree they depend on the values of

Poisson ratios vy, V.

3 = wi(,7) 2) 11(7,7) b)
06 = - ! 10 o
_________ = N
08 N,
oY O A —— _
‘ 06 -
N,
i 0.4 AN
02 [ ~X \\\\\ N
2 Nl S
el
05 3 1 05 i 2 ~ 4
10 10 10 10 10 10 10° T 10
71 = wi{(7e, 0) ¥1(79,0) d)
O il . . ]
""""""" % NS TR
08 NN
____________ : N
04 . 06 \\;\‘
“‘r\ _____________
3 04 N\,
02 pr—mrmmmr e N
02 -‘-_.___f::f::_
0 Wi 2 0 0 1 2 3 =, And
10 10 10 10 10 107 Tg 10

L

o4 T ' Fig.7 Graphs of parameters
' 11, v; determining the stress
singularity in the case a =1,
02 for different values of po/jh
and vy = 0.5,1/1 =0
o l_
0% 10 107
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As regards to the second real zero 7; of function det'¥,(s,7,,T,), situation changes.
Namely, parameters T,,T, influence in the most degree, than the values of Poisson ratios
Vy,V, . Thus, in the case T, =0 there exist only one real zero in interval (0,1}, it means that
Y11,

For small magnitudes of dimensionless parameters T, and 7T, (T,,T, <0.I) stress
singularity is closed to that for “ideal contact”. Moreover, in this case only one singular
term of stress apears. For large values of these parameters, the second singular term
contributes significantly to the stress ditribution near the crack tip.

Let us investigate system of equations (13) in the both remaining cases of interfacial zone
geometry (0<a<1land o> 1) We can conclude that vector-functions p_(s) should be

analytic in the strips o.—1<Res<w,, and —m, <Res<o— |, respectively. They have
simple poles at points s=a—1, s=, (0.#0)and s=-w,, s=a~1,butin case 0=0
there exist a double pole at points = —1 . As for the Mode 11T problem, it can be proved that
systems of functional equations (13) have also unique solutions for the Mode I and Mode 11
problems for all values of parameter . They can be found from respective systems of

singular integral equations with fixed point singularities.

Analysis of the solutions

Now we discuss asymptotics of displacements and stress fields near the crack tip.

Corresponding relations in all cases (0 < o < e ) can be written in the following forms:

6y = K, f@)r™ " +0(™"), r—0,

oD ==K, (4, + D fr 00, r o0,

Yo +1

m

(16)

; o K pts 1-v,; .
(Y _ D) m _ Y B Tu
ut =Cl +—272P--[[1 \.rj(l+~(,")]f+Y +1f ]+O(r ), r—0,

ke j m

. K (1—=v )t v (y,,-D .
=i —— et | s A U 2l + |+ 00Y), ro0,
Uy on 27:.'-'-}(7,2,, -0 |:{ l—VJ- (1+v,) f'+f (ri=), r
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where C)) = C{ =0, but constants K, (m = 1, 2) are generalized SIF (for the Mode I and
Mode 11, respectively). In relations (16), f’= fo(8) is the derivative of function
f(®)=f"(y,,8) which has different form in each of the domain G =0; 1 for
-n/2<8<0; 0<0<n/2, respectively). Thus, forj=1(¢=n/2-0€f-n/2,m/2])

we obtain: _
;= cos[(l - 7,)¢]+ B, cos[(l + 7,)¢], D = sin[(l - 72)¢]+ B, sin[(l + Yz)cb],

R LI v}
=1 2

where &, =(1-7v,)/(1+%,), but the values of P, p, are calculated by relation

(s+'ym)pm(s)~[171,;—;2]T, §—-Y,. We do not present here the forms of functions

F(¥,,,0) determining the asymptotics in domain —/ 2<8<0, because they are

cumbersome, and the volume of the paper is limited.

In equations (16), constants from a priori estimations (6) are calculated taking into account
the behaviour of vector-functions p, (s) by relations (10) with the respective values of

parameters: y, , Y.(m), ®,, @,(T,7,) instead of y,, y_(3), @,, 0}(T,).

For the Mede I and Mode 11 problems, all conclusions drawn for the Mode 11T problems are
also true. Therefore, parameter T, should be replaced by parameters T, and T, in the
diagram of Fig.4. Besides, the value of the first zero ® = o, of function F,(s} is different

from the value w=w,(=w,} of the first zero of function det F_(s). Differences in

contradiction to the Mode III problem only appear in the case of the thin adhesive wedge
(o =1), when two real singular terms in asymptotics of stress near the crack tip can arise
for the Mode I and II problems, and o] # o) .

Besides, parameter B,, in the relation for function £ depends on tractions along the

crack surfaces, in general. And only for the following two cases: 1)A=0; 2a=1, A=0
its values do not connect with the loading, and are defined by the mechanical parameters of

the problems. The last fact means that two parameters arise in the asymptotics of stress for
the “nonideal contact” conditions (K, B,), what contradicts to the situation for the “ideal

contact”, when only one parameter K,(K,) (generalized SIF) exists for the Mode I (the

Mode II) problem.
We do not write here unwieldy expressions for the asymptotics of displacements and stress

for the Mode I and Mode II problems in case o =0, when the stress singularity has a

logarithmic character.
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Conclusions

As it could be expected, geometry of the thin intermediate zone between the different
materials (the value of parameter o) essentially influences the stress singularity near the
crack tip terminating at the interface. Moreover, this influence has not only qualitative
character (different values of the stress singularity near the crack tip), but also a quantitative
one (the increase of the number of singular terms in the asymptotics of stress). Besides,
when thin adhesive zone is represented by thin wedge (e =1), different values of stress
singularity appear for the Mode I and Mode 1I problems, and two or one singular terms of
stress near the crack tip can present (see Figs 5-7). However, in the most of really possible
situations (74,7, <0.1), there is one singular term and the corresponding singularity
exponent is a little different with the exponent for “ideal contact™.

The asymptotics in this case (o =1) is “not stable”. If the value of o is closed, but not
equal to 1, the main exponent of stress singularity rapidly changes, and the number of the
singular terms of stress is very large (and tends to infinity as & — 1). The last fact can be
considered as an additional argument to the opinion, that not only the first but the next terms
of stress asymptotics near the defect tip should be taken into account in fracture mechanics
analysis.

Let us remember, that in the most cases of the nonideal interface (o # 1) two parameters

(K, B,) in the main singular term of stress appear depending on the loading, This is in

contradiction to the situation for the ideal contact, where only one constant (SIF) exist.
With the other hand, stress singularity depends on contact parameters T ; for the case

0. =1 only. However, magnitudes of 1, influence essentially stress intensity factors K,

(and the coefficients in the next singular terms of stress).

We considered in the paper only symmetrical strain-stress states (see @), (5). As it is
shown in [11} for Mode IIl, an additional singular term of stress near the crack tip
terminating at the nonideal interface appears when loading is not symmetric. This fact
contradicts with the situation for ideal interface, where nonsymmetric loading leds to
bounded stress field near the crack tip. However, the mentioﬁed above singularity is closed

zero in the most important cases (T, <1).

Of course, these theoretical results should be experimentally verified. Let us note in this
connection that for a real adhesive intermediate zone the value of parameter 1 ; is very

521




small, as a rute. Hence, on the distance from the crack tip r ~ © ; » the asymptotics is rebuilt

to that for the “ideal bimaterial contact”. This fact should be taken into account when the

corresponding experimental results are interpreted,
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