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ABSTRACT : The increased wse of viscoelastic materials for structural applications expected 1o
operaic for long periods of time, reguires a better understanding of their mechanical behaviour and
Jracture properties. It Ias been observed that time dependence is of great importance in determining
the rate of crack growth when the matevial strength becomes an important design parameter.
Predicting the initiation and crack growth in such materials is an important step in developing
numerical inodels and for prediciing their long term performance. In this paper, a new formulation
in the time domain is developed for the displacement and stress analysis of quasi-static linear
viscoelastic fracture. We formulate a new constitutive equation in terms of stress and crack opening
intensity factors, using corvespondence principle by means of Volierra integral equation. The crack
growth process is siudied by means of a computational approach using a modified path independent
integral J. The formulation is incorporated in a finite element software and the algorithm is suited
Jor ihe time dependent behaviour of cracks in viscoelastic materials.

1. Introduction

The increasing use of viscoelastic materials for structural applications requires a
better understanding of their mechanical behaviour including fracture characteristics. The
general goal of this investigation is to apply fracture mechanical methods to characterise the
tong-terin behaviour of viscoelastic material under static loads f1].

In the first section we use an incremental formulation in the time domain for the
displacement and stress analysis of quasistatic, linear viscoelastic structures. The
viscoelastic behaviour of the material is described by a discrete creep spectrum and an
incremental formulation [2]. This allows to avoid the retaining of stress history in computer
solutions [3,4]. The linear viscoelastic model is integrated into a finite element software.

Highly accurate resulis are obtained,

403




In the next section we describe the kinematical and mechanical fields around a crack
in a linearly viscoelastic material. Crack opening intensity factors [5] are presented in order
to formulate a new constitutive equation in terms of stress and crack opening intensity
factors using the correspondence principle. The solutions are general with respect to
boundary conditions and material properties but quasistatic and isothermal conditions are
assumed.

Finally, in the last sections crack growth initiation is presented. The formulation
based on a spectral decomposition of the reduced viscoelastic compliance is detailed.

The numerical results are intended to demonstrate the validity of the finite element

algorithm, and are compared with analytical solutions [6].

2. Viscoelastic finite element analysis

The deformation of viscoelastic materials are not only related to the instantaneous
slate of stress but depend on the loading history. According to Boltzimann’s equation for a
non ageing linear viscoelastic material, the constilutive equations between the components

of the stress tensor G () and the components of the strain tensor E,j(!‘) can be written in
terms of creep functions [7]:

96y, (T
—kj()dt

1
pw )

I
e (1) = JJ,-J;H(I—'E).

—D

Jijuy designate creep tensor components. The constitutive equations can now be written

under the plane stress or strain conditions:

g1(1) 1 —v 0 ! [ oy ft)
En() |=|-v 1 0 -IE(r—t)-g o9, (1) | dt 2)
2-g12(8) 0 0 2-(+v)jo a5 (1)

In equations (2), we have assumed that the Poisson coefficient V is constant, and the
Young's modulus depends on time. The solution procedure for the plane problem involves
finding a displacement vector field and stress tensor field that simultaneously satisfy the
condition of static equilibrium, the kinematic relation between strains and displacements,

and the viscoelastic constitutive equations (2) for all t. To obtain the stresses and strains at
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any lime t, and to avoid the retaining of stress history in the computer solutions, we use the

spectral decomposition technique [3] for the Young’s modulus:

| 1 t 1 b,
AR +2_4k(m) '(“e ) ®

where ?»("') = k('") n () are strictly positives. This spectral decomposilion correspond to

a general Kelvin Voigt model as shown in figure 1, ™ and n("') designate modulus of
elasticity and coefficients of viscosity. The solution process of a step-by-step nature is then

obtained. Consider the time step At, =t, —t,_; (n€l,..,N ). During each step the load

is taken to be constant. The constitutive equations (3) can now be given in terms of

increments of stresses and strains (for more details, see reference 3):

Aeyy(ty) I —v 0 Ay (t,) 1y =1
Aey (1) |=|-V 1 0 : Mu ’ AGZZ )] + €22 (ty =1 4)
2-Agy (t,) 0 0 2:(t+v) Ac |, (t,) 2-Ex(t, 1)

M, is the viscoelastic compliance which reflect the amount of creep deformation, where

é",j (f4-1) represent the influence of the complete past history of strains on the components

k(m) k(M)
VN N

of stresses, and reflect the memory effect of the material.
1 o) L

Ko 0 W
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Fig. 1 : Generalised Kelvin Voigt model
The solution procedure in the context of a finite element method is obtained using the

principle of virtual work for viscoelasticity; the equilibrium equations can be rewritten as:

[KT]" ! {AU}” = {AF}” + {AFViS }H—l (5)
{aAU}  and {AF }, designate the increment displacement field and the incremental nodal

force vector between t,; and f,, [B] is the strain-displacement transformation matrix and

[Krl, is the tangent stiffness matrix, it is given by:
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1 -v 0
[KT],, =J.ML'[B]T-[A(,]-[B]dQ with [4,]=|-v 1 0
Q" 0 0 2-(14v)

{AFW-, }"_l is the viscous load vector increment corresponding to the complete past history

of strains and stresses. It is given by:

{AFW-_,}"_I =;[[B]T -{ci}”_I dQ with {Q}n_l = Ml," '[Av]'{i},._:

3. Definition of crack tip parameters
3. 1. Mechanical fields

Here we use Brincker's ideas to describe the mechanical fields around the crack tip
for a viscoelastic material in plane problems. As pointed by Brincker [8], the state of stress

and strain in the vicinity of a crack, in an elastic material, is completely determined by two

constants; the stress intensity factors K.: (v =1,2 ) and are given by:

fop ©)
op(r.0.1)= K$ (240,3k.1)- J%;F

and the displacement field around the crack tip, in the elastic case, is given by:
1 A(2p.3k)
5 (r.0,1)= S 0) K +——— hg(0)- K7,
ug (r.8.¢) "21‘ 2 Saﬂ( ) B 2 aB( ) B

where (r,0 ) is the polar co-ordinate system, U is the shear modulus, k& is the modulus of
compression, fog, Bop and hgp represent the well-known angular functions and A is
defined as:
A ={3—4v) in plane strains
A =(3-v)/(1+v) in plane str.csses

The most common way to generalise this development to a viscoelastic material is to derive
the viscoelastic solution from the corresponding elastic problem by the so-called

correspondence principle [9]. This approach makes use of the observation that the equations
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of viscoelasticity can be converted to the equations of elasticity by means of Laplace

Carson transformation, and thus the viscoelastic solution is then obtained by inversion of

the Laplace Carson transform. Note that the elastic constants 2}L and 3k must be

replaced by lhe complex functions Rf (p) and R;(p), which are Laplace Carson

transform isotropic relaxation functions, Brincker [8] and are given by:
k0= K5 (11 (o). 23 (0)}
with k5" (R} (). R (p)) = 012 {K;’(zu,ak,z)}

2 p and 3’0!_,1_,, represent the Laplace Carson Lransformation and the inverse of Laplace

Carson transformation. By applying this transformation fo the displacement field, we have :

Ua() =075 {Ug (p)} suchas ug (p)= \/% {gap C3(p)+ hop - D (P)} 6)

LKk
WithCﬁ =0 and Dﬂ = % e))
R| 2

and the viscoelastic displacement field is then given by:

)= 2={ap o+ -0 ®

Cp and Dy represent the four strain intensity factors.

3. 2 Criterion of crack initiation

The theory of Schapery considers the existence of a failure zone in the vicinity of the

crack tip [9]. Consider the two following integrals (see figure 2):
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Fig. 2 : Integration domain and [ailure zone
Jv= I(dez —()‘,-jnju,-_[)ds and Jf = J.(dez —G,jnju,-_l)ds "
Cl C2

aw

where 0;; = —

aEU

The properties of invariance of the line integral provides, taking into account the sense of
integration along paths C/ and C2, the relation, [10]:
Jv=Jf : (10)

If ¢,, represents the stress distribution, in an opening mede of crack in the failure zone, the

singularity being neglected in this zone, J ¢ can be defined as being the necessary work
W 1o create a supplementary surface crack of length a:

Jp =0, [Us]=Ws (1D
[Uz] designates the crack opening displacement. The contour C/ being arbitrary, except

that it starts and ends on the crack faces. Equation (10) is very important because it provides

a means of determining indirectly W; without more hypothesis on the behaviour of the

material there (far field solution). So at time +; , crack growth initiation is determined by:
J‘, (II- ) = Wf

In this case, J,, designates energy release rate changes.
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3. 3 Crack opening intensity factors

Choose a contour C/ such that along this path naterial points have a linear viscoelastic
behaviour. By introducing stress and displacement viscoelastic fields in the expression (9),
we demonstrate that :

5 _2 (C[} +D|3) —x 1o}

(12)

The crack opening displacement is given by the difference between the displacement of the

top crack face and the bottom one.
[Uo JE0) = U (£.6 =m,1) Uy (£,6 ==, ) (13)

x designates the distance from the considered point to the apparent crack tip. Introducing

~ equation (8) into (he relationship (13), the crack opening displacement is determined by:

lvife.r)= Ké"')(f)-\[g and [, Jg.1)= KF)G)-JE T

with K(a)(t) 2. (cﬁ (£)+Dg (r)) as)

K Igg) represent the two opening crack intensity factors, [5]. Using equations (12) and (15),

one can find;

k¥ .k
Jv:EB—S‘ﬂ— (16)

By coupling equations (7) and (15), we obtain, using the Laplace Carson transformation,

the complex strain intensity factors:

k" ()=c"(p) k K5 (p) a7
with ¢*(p)= s (l+k(§::8, i (p))) =510}

C(t) designates the reduce viscoelastic compliance defined by :

1+ M2p(1), 3% (1))

W=
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the inverse transform of equation (17) permits to define the relationship between stress and

crack opening intensily factors, [11]:

(0)
(8)(1‘) Jc(r 1:) (T) dt (18)

4. Spectral decomposition

4. 1 Consfitutive equation

To study crack problems in complex structures, it is necessary to use an incremental
formulation for the constitutive law. In order to determine the mechanical fields near the
crack tip and the crack initiation critical times, it is necessary to use the same spectral
decomposition technique but applied on the reduce viscoelastic compliance C(#) [11].

Consider the generalised Kelvin Voigt model as shown in figure 3.

m g ™)
ke k.
K e W —’\/\/\/\—l SAVAVAVA
—ANANAT b — ;
; ny ! e e T
S S S =

Fig. 3 : Spectral decomposition of C(t}

The input solicitation to this mechanical model is the stress intensity factors Klgo) while the

output is the strain intensity factors K ]ge). Note that the viscoelastic compliance C{¢) is

given in a discrete spectrum such that, [11]:

1 (é") il (m) (m)
cle)= k( T (,,.,) +Z (m) with A} (m)

m=1

(&

In each time step Dty ,the solution of the differential equation , obtained by the use of the

mechanical model shown above, allows to relate the increment of crack opening intensity

factors A[ K g’) J

to the increment of stress intensity factors A( K [{;’)) :
n H
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o(517), -ci-o(7) (), 09

where C, represents a reduced compliance viscoelastic function, it depends on the spectral

decomposition of the compliance viscoelastic CY1) and the time increment Dty

M
1 t 1 1 (i)
C’ = J1-= .(]_e"lc 'A’n)
n kc 0) T'an) 2] k(gm) [ A'E‘m) At

o
(E,%E)) | reflects the influence of the complete past history of crack opening intensity
-

factors, it is given by:

M

(r 153)) {HA(L) Zk(i.) (]_e-xf;")-m,, )}‘(Kéﬁ)),,_l

m=l

S

m=l

n—1

where :

) P ), ),
{ (}”) L[_' —),(Lm) A,-,,) (1_ ;{T)[A,_" J] A(Kéo))"

Equation (19) permits to determine the opening crack intensity factors in function of the

stress intensity factors. However, for the complete solution of the mechanical problem in an
opening crack mode 1, it is necessary to calculate one of these two values. Local techniques
are often used ( static methods or cinematic methods) but they present the disadvantage to
calculate displacement or stress fields in the vicinity of the crack tip (singular zone). An
alternative method consists in determining the energy release rate using the equation (16).

This will be detailed in the next section.
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4.2 Energy release rate relation

The use of the integral J,, permits to evaluate the energy release rate over an area on which

the material is considered viscoelastic. However, in the finite element method which is used
in the solution, the mechanical and kinematical field solution are evaluated in the integration
points. It is then necessary to realise an intcrpolation process so as Lo project these different
fields on the integral line. To avoid this approximation, Destuynder [12], propose to employ

another independent path integral, the so-called Gy integral, and is defined by :

J, =Gy = J('W'ek,k +Oy Uik 'ek,j) dv (20)
|4

The area of integration V is a crown delimited by two contours (see figure 4).

X2 el=1
02=0
- —>X]
91 =0
A 162 =0

Fip. 4: Integration domain of Gg
The field 8 is continuously derivable such as (8, =1, 0, =0) inside the crown and

(8, =0, 85 =0) outside. Note that the vector @ varies from (1,0) to (0,0) in the band of
the crown as described in figured. This fictitious field permits to evaluate the integral Gy

without using the mechanical fields near the crack tip (far field solution). We note thal

equation (20) permits to evaluate the integral Gg in an opening mode. Mixed modes are

not allowable.
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5. Numerical application

We consider a viscoelastic plate CTT of 500 mm of length, 200 mm of width, under
uniform tension of 10 Mpa with a central crack of length 80 mm perpendicular to the

direction of loading, as indicated in figure 5.

‘\(._._. -y
80mm

|
10MPae—— l g-—> 10MPa
o
(o}

500mm

Fig. 5 : Center cracked plate mesh

We use a spectral decomposition of the Young modulus presented in figure 6 as well as a

constant Poisson ratio (v = 0.3).

100MPa 100MPa
100MPa NN AN

1000 MPa.s 1000 MPa.s

Fig. 6 : Spectral decomposition of 1/E(t)
Numerical results are compared with results obtained by Masuero [6] as well as with the
analytical solution. In the case of a creep plane siress state, the stress intensity factor K ﬁc)
is constant. The elastic value of KSG) is 1187 N -mm ™2, Using equation (18), we can
evaluate the variation of the crack opening intensity factor, such that;
9= ()

By replacing the spectral decomposition of C{#) into the above expression, one find:
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KFE) =1044- (2 - e“'“o) mm'?

20

As can be seen from equations (16}, (21) and (22}, the value of the integral J , is then given

by :

1, =15484.(2— ) N 1 mm

Figures 7 and 8 show the evolution of stress and opening crack intensity factors. We can

note a good agreement between the numerical results and the analytical solution. Figure 9

shows the variation of the energy release rate. The numerical results, based on Gg , behave

better than the results of Masuero.
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6. Conclusions and perspectives

We present an efficient numerical technique in order to study fracture parameters in
a linear viscoelastic maierial. The model, which is iinplemented in a finite element program
for the analysis of plane slructures-'.. appears to be very efficient. This approach, based on a
spectral decomposition, can be generalised to anisotropic materials. The incremental

solution can be extended to deal with the propagation of cracks in complex structures.
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