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ABSTRACT: From the weakest link theory, the classical multiaxial criteria, i.e. the principal nor-
mal stress criterion, the maximum shear stress criterion and the von Mises criterion, have been
derived as special cases. On the basis of this analysis, a general fatigue criterion is formulated for
multiaxial stresses. The existing multiaxial criteria of integral approach and of the critical plane
approach can be derived as special cases from the general fatigue criterion. On this basis, a new
modification of the shear siress intensity hypothesis SIH which provides satisfactory agreement
between experimental and calculated results is proposed.

Introduction

A multiaxial stress state which varies with time is generally present at the most severely
stressed point in a structural component. As a rule, the multiaxial stress state is of a very
complex nature. The individual stress components may vary in a mutually independent
manner or at different frequencies, for instance, if the bending and torsional stresses on a
shaft are derived from two vibrational systems with different natural frequencies.

For assessing this multiaxial stress, the classical multiaxial criteria, such as the von Mises
criterion or the maximum shear stress criterion, are not directly applicable. This is
illustrated in figure 1 for the example of two load cases. In the first case, an alternating
normal stress occurs in combination with an alternating shear stress with a phase shift of
90°, figure 1a. The second case involves a pulsating normal stress, G, and a compres-
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sively pulsating normal stress, Oy figure 1b. In both load cases, the principal stresses
exhibit the same variation with time. In accordance with the classical multiaxial criteria,
the same equivalent stresses are calculated in both cases. The endurance limits are very
different, however, as shown by experiments [1]. This is explained by the fact that the
principal direction can vary in the case of multiaxial fatigue stress. A variable principal
direction is not taken into account by the classical fatigue criteria.
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Fig. 1: ‘Two examples of multiaxial stresses and the time histories of principal stresses and
principal directions

For calculating the endurance limit in the case of multiaxial stresses, a number of muitia-
xial criteria have been developed during the past decades {2-12}. These developments are
even more comprehensive, as indicated by recent studies [13-17). The multiaxial criteria
differ considerably in formulation, in the range of applicability, and in the reliability of
prediction. Furthermore, they aiso involve highly different physical interpretations, if
such an interpretation has been considered and indicated at all in formulating the
. hypothesis.

As a matter of principle, the known muitiaxial fatigue criteria can be subdivided into
hypotheses of the critical plane approach, hypotheses of integral approach, as well as
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empirical criteria. In the case of integral approach, the cquivalént stress is calculated as an
integral of the stresses over all intersection planes of a volume element; compare with the
hypothesis of the effective shear stress [2] and the shear stress intensity hypothesis SIH
(3, 11]. In the case of the critical intersection plane approach, only the intersection plane
with the critical stress combination is considered, for instance, with the modified shear
stress hypothesis proposed by McDiarmid [5].

In the present publication, the weakest link theory is first anatysed. Subsequently, the
relationship between the weakest link theory and the classical multiaxial criteria is
explained. The multiaxial fatigue criteria of the critical intersection plane approach and of
integral approach prove to be limiting cases of the weakest link theory. On the basis of
this analysis, a general multiaxial criterion is formulated for arbitrary multiaxial stresses.
From the general criterion, the known multiaxial criteria can be derived as special cases.
Finally, the fatigue behaviour under multiaxial stress is described for a few load cases as
examples. The further developed shear stress intensity hypothesis is verified on the basis
of test results.

Weakest Link Theory and Classical Multiaxial Criteria

The weakest link theory was originally developed by Weibull for describing the static
strength of brittle materials {18]. It was extended by Batdorf for considering the
probability of failure of ceramic materials under multiaxial static load [19-21]. The wea-
kest link theory is frequently applied for calculating the probability of failure of ceramic
components under multiaxial load [22-24]).

In accordance with the weakest link theory, the probability of survival of a component
can be described as follows:

¢ Oy0e )
Toe
Pyy = exp| —— =1 .dQ-dV 1
o =exp|—5- I( o J (1)
vQ

where denotes

Oyoe ~ local equivalent stress in the intersection plane of the defect

K - Weibull’s exponent

Q -, the spherical surface area, figure 2

v - the volume of the machine component.

The equivalent stress can be calculated as follows:
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Fig. 2: intersection plane and spherical surface

For an inhomogeneous stress distribution in the volume, a stress integral is employed for
calculating the statistical size effect:

K
v

Cvmax

The probability of survival can thus be described for the overall system:

K
Py = exp —I-(%‘?ﬁ) @

The statistical size effect is described by means of equations (3) and (4) [25-27]. In
deriving the equations, it has been assumed that failure originates at the interior of the
volume with the same probability as for the surface. As a rule, however, failure occurs at
the surface; consequently, the surface area A must be inserted into the preceding
equations, instead of the volume V.

The local failure criterion, that is, the equivalent stress o, ., must be sclected in
correspondence with materials, A distinction must be made between ductile and brittle
materials. In the case of brittle materials such as ceramics, the defect can be considered to
be a crack as a first approximation. The normal stress, which is perpendicular to the crack
plane, is decisive for the failure. The normal stress GW‘ is selected as equivalent stress if
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the crack is not sensitive (o shear stress, The equivalent stress is then given by
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Fig, 3: failure limits with various Weibull exponents by equation (5)

In figure 3, the failure limits are plotted with the use of equation (5) for various Weibuil
exponents K in the range from 2 to « in an 0,-0, diagram for the plane stress state. For an
infinitely large Weibull exponent, koo, the same failure limit is obtained as with the
principal normal stress criterion. In accordance with the maximum norm of the algebra
[28] the equivalent stress given by equation (5) is the major principatl stress.

Gy LS Aa i max (6)
For a Weibull exponent, k=2, an elliptical limit curve is obtained.

1

Oy = %(303 +20y Oy + 3032, + 41%,,)5 @

The failure limits for various Weibull exponents differ especially for the stress states with
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biaxial tension, 0,=0 and pure shear with 0,y=-0;=T. For the range k=10~30, the
difference from the principle stress criterion is smatl. At k=2, the ratio of the tolerable
stresses with reference to the tolerable uniaxial stress 64 is only 0.61 for biaxial tension,
0y=0, and 0.866 for pure shear, 0,y=-01=T.

For ductile materials, such as steel, the beginning of plastic deformation, that is, the
beginning of slip motion of the slip system under shear stress, is usually employed as
failure limit. The slip system comprises the direction most densely occupied by atoms
(slip direction) in the most densely accupied intersection plane (slip plane). The local
failure criterion depends on the orientation of the slip plane yp as well as on the
orientation of the slip direction. The shear stress, T, o, is selected as local equivalent
stress. Thus, equation (2) must be extended by integration over the angular range B=0 to
7. The equivalent stress is then given by

i
T 2x x
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Fig. 4: failure limits with varicus Weibull exponents by equation (8)

In figure 4, the failure limits given by equation (8) for the Weibull exponents from k=2 to
eo are plotled in an ¢,-0, diagram. For infinitely large Weibull exponents, k—e, the
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resulting failure limit, in accordance with the maximum norm of the algebra [27], is the
same as that from the maximum shear siress criterion. At x=2, the same failure limit is
obtained as from the von Mises criterion. All failure limits wilh various Weibull
exponents are situated between the two limiting curves, k=2 and o. For the stress state
_G,y=0,(biaxial tension), the failure limit is independent of the Weibull exponent. For pure
shear, 0,=-0 =T, the ratio of the tolerable stress to the uniaxial tolerable stress, o A varies
from 0.5 at k=eo (from the maximum shear stress criterion) to 0.577 at k=2 (in
correspondence with the von Mises criterion).

The von Mises criterion has been interpreted differently in the past:

Distortion energy (Maxwell 1856, Huber 1904, Hencky 1924)
Octahedral shear stress (Nadaj 1939)
Root mean square of the principal shear stresses (Paul 1968)

Root mean square of the shear siresses for all intersection planes (Novoshilov
1952)
Novoshilov [29] has shown that the root mean squarc of the shear stresses for all
intersection planes is identical with that from the von Mises criterion:
1

I 2n 2 2 1
Tint =) 7~ [ (TY‘P) -siny-dg-dy | =(315)2 ®)

n

¥=0¢=0

The interpretation given by Novoshilov has led to the development of the hypothesis of
effective shear stresses and the shear stress intensity hypothesis [2, 3].

It can be proved that the integration over the angle B is proportional to the resultant shear
siress, T,
TP

a—[(fwrs)xdﬂ =g (10

— =

Hence, the integration over the angle § can be omitted for static loads. The interpretation
according to equation (9) can be regarded as a special case of equation (8) with the
cxponent ¥=2.

The classical multiaxial criteria, the principal normal stress criterion as well as the maxi-
mum shear stress criterion and the von Mises criterion, can thus be considered as special
cases of the weakest link theory, equation (2). This fact is utilised for formulating a
general strength hypothesis in the following section.
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General fatigue criterion for multiaxial stress

A multiaxial fatigue criterion must first satisfy the invariance condition; that is, the
calculated equivalent stress must be independent of the selected fixed coordinate system
with respect to the body. Moreover, for multiaxial fatigue stresses, the criterion must take
into account the variable principal stress direction, see figure 1. In order to satisfy these
conditions, a multiaxial criterion can basically be formulated in two ways:

- as a hypothesis of the integral approach, and
- as a hypothesis of the critical plane approach.

In the case of multiaxial fatigue stresses with a periodically varying stress tensor cij(t)'
the stress components can be calculated in an arbitrarily oriented intersection plane at any
time. The normal and shear stresses in the intersection plane, which vary with time, are
described by mean values and amplitudes. The amplitude and mean value of the normal
stress, o, , in the intersection plane and of the shear stress, T__,, in direction w can be
simply c!\?culated from the maximum and minimum during a period, fig 2. If the local
failure criterion is selected independently of the direction w in the intersection plane, the
maxima of T‘Y‘PBE and T fm can be employed. Thus, four stress components, G, ., T, .,
O,y 204 T o, are present in the intersection plane, figure 5. The calculation of the
amplitudes and mean values of the stress components in the intersection plane is
described in more detail in [1, 11].

intersection
plane yo

Fig. 5: stress components in an interseclion plane

Let Z‘Y‘P and T. be two stress components, or (wo arbitrary combinations of the four
stress components in the intersection plane. In the following, the equivalent stress is
formulated for z‘Y‘P in the sense of the weakest link theory:
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Eyy = j(zw,)”-dn u; Zyp>0 (i1)
Q

In this form, the effect of the stress components which are decisive for damage can be
described, for instance, the shear stress amplitude for ductile and "flawless” materials, and
the normal stress amplitude for briltle and "defective” materials.

If the exponent 1 approaches infinity, the resulting equivalent stress is the maximal stress
% ax in accordance with the maximum norm. In this case, the formulation is applied for
the multiaxial criterion of the critical intersection plane approach; accordingly, the
stresses in the intersection plane of the maximal stress are decisive for fatigue failure.

If a defined real number is chosen as exponent, equation (11) corresponds to the
formulation for the fatigue hypothesis of integral approach. For the sake of simplicity; the
exponent is set equal to 2 for the shear stress intensity hypothesis.

Mean stresses alone cannot cause fatigue failure. In the presence of fatigue stress,
however, they decrease or increase the tolerable stress amplitude. The effect of stress
components such as the mean normal and mean shear stress can be assessed by means of
the following formulation:

1
[(Zrg)" (Tpp) -0 |
Tyy =| £ ; Zyoi Ty > 0

;I: (Er)" a0

(12)

If 1 and v approach infinity, and v is much larger than 1, the formulation of the stress
component T in the intersection plane corresponds to the maximal stress component X.

With the equivalent stresses thus formulated for the stress components, or combinations
of same, equations (11) and ( 12), the failure criterion for multiaxial stress can be
established. This fatigue criterion is generally applicable, since all known multiaxial crite-
ria can thus be derived. In the following, this is illustrated for the example of the critical
shear stress criterion, as indicated by Ngkleby [6].

In accordance with the criterion of critical shear stress after Ngkleby [6], the critical
intersection plane is defined as that with the maximal equivalent stress:

TY(PV’ =2Twa +2CI'O'W +2B'°"‘(<pm (13)
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The failure criterion is given by

gy =c- max{'cw,v}

—ow (14)

where ¢ is a compensation factor which depends on the tensile-compressive fatigue
strength. In accordance with the general multiaxial fatigue criterion, the failure criterion
can be expressed as:

a, =c.[](TWV)” .dQF

Q
=Gw

(15)

with [1—yoo,

From the general fatigue criterion, arbitrary fatigue criteria can be formulated. For this
purpose, only the exponents must be defined differently, or the stress components and
combinations of stress components must be selected differently. For the sake of
simplicity, the exponents are set equal to 1, 2, or = in equations (11) and (12),

Further development of the shear stress intensity hypothesis STH

In the sense of the general fatigue criterion, the shear stress intensity hypothesis, SIH [1,
3, 12], is modified in the following. For the modification, the shear stress amplitude and
the normal stress amplitude are evaluated as the integral of the stresses over all
intersection planes. The mean shear stress is weighted over the shear siress amplitude, and
the mean normal stress over the normal stress amplitude. Thus, an equivalent stress is
formed for each of the four stress components in the intersection plane.

1

15 " 2r ) 13
Tya = P J It%a-sin'y-d(p-d*{ (16a)
7=0¢=0
1
2n uy
15 ) )
ova=iz= [ [ola-siny-do-dy (16b)
1=0¢9=0 ‘
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1
(n 2n Vs
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vm n 2n (16d)
[ Jok3, siny-do-dy
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In the shear stress intensity hypothesis, Ky and L, are again set equal to 2. For simplicity,
a value of 2 is also selected for v I For evaluating the mean normal stress, the exponent
Vv, is set equal to unity; hence, the difference between a positive and a negative mean
stress can be taken into consideration. The failure condition can then be formulated by a
combination of equivalent stresses.

2 2 2 2
a'cva+bcva+m-tvm+n-cvm =0oW an

The coefficients a, b, m, and n are determined by the requirement that the failure criterion
can be salisfied for the uniaxial stress state.

[ 2 (18a)
a=é 3(‘:—‘1) -4
W
- 2{ (18b)
p=L 6—2(3‘"—)
5 Tw ]
2 2’
2 o TSch
G -— 1 -
v [rwJ ( 2 ) (18¢)
m= 3
4 TSch)
7 2
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2 2
U%V _(USch) _4_m,(USch)
n= 2 21 2 (18d)
5 (Gs.:h )
FAY
For this purpose, the characteristic parameters for alternating strength Oy, pulsating

tensile strength Gg,,, alternating torsmnal strength Ty, and pulsating torsional strength
Tgeh 8¢ required.

Since the coefficients a and b cannot be negative, the shear stress intensity hypothesis is
applicable in the following range of fatigue strength ratio with respect to the materials:

Jj oW 3 (19)

Tw
For extending the range of applicability, the exponents, || and |L,, can be taken larger

than 2.

For calculating the equivalent stress in accordance with the SIH, an integration is
necessary for the general case. For synchronous multiaxial stresses,

Oy =GOxm +Oxa 'sinwt

. 20)
Gy = Cyp + Oy, 'sinat (
Txy = Txym + Txya -sin @t
the equivalent stresses can be calculated analytically:
2 2 (21a)
2 2 g Tw 2
Tw w
L 2 2
T%m = E'[All -Oxm + A12 ' Oym +A13Oxm "Oym
» .
+Ag1 - Txym + A22 - Oxm - Txym +A23 ' Oym "‘xym] (21b)
3
Oym = “.;"[A?’l *Oxm +A32 " Oym T A33 'Txym] ' (21¢)

The coefficients A depend only on the mutual ratios of the siress amplitudes, G,,, © var
and Tay o+ These coefﬁc1ents are summarised in table 1,
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3

4x2 +3y2 — ax.y + 722

32 +4y? —4x.y+ 722

-4:;2—43;2 +6x-y—6z2

742+y2—x-y+322

x2+y2—x-y+3z2

x2+y2—x-y+322

7x2 +‘7y2 —6x-y+3622

10x-z—-6y-z

x2+y2—:»r.-y+32.2

xz+y2 —x-y+322

-6x-z+10y-2

1t2+y2—-‘\(-y+322

5)(2+)/2+2:r(-y+4z2

x2 +5y2 +2>:vy+¢|z2

B(x+y)-z

3x2+3y2+2x-y+4z2 3x2 +3y2+2x-y+4z2 3x2+33,f2+2.\c-y+4z2

Table 1: coefficients for the estimation of the equivalent siresses according to equa-

tion (21); with X=0 ¥=Oy, and Z=Tyya

Endurance behaviour under multiaxial stress

On the basis of a few load cases, the endurance behaviour is analysed and compared with
calculation. More detailed descriptions are presented in [12] with the older formulation of
the shear stress intensity hypothesis STH.
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Fig 6: effect of a static normal stress on the endurance limit of an alternati ng normal siress
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Firsl, the effect of the mean siress is considered. This is described for the load case of an
alternating normal stress with a static normal stress. If the direction of the static normal
stress is the same as that of the alternating norinal stress, the tolerable stress amplitude
can be calculated from equations (20) and (21):

2 4m 5n
OxaD = Jow ~ ?G%m ~=Oxm 22)

If the static normal stress is perpendicular to (he alternating normal stress, the tolerable
stress amplitude is given by

m n

OxaD = Jc%; - 703,“ - 703,,“ (23)
In figure 6, equations (22) and (23) are compared with the test results in the Haigh
diagram. Accordingly, a mean normal stress which is perpendicular to the alternating nor-
mal stress is less detrimental than one which is parallel with the alternating normal stress.

1
T
xyaD
™w 0.8 ny >>1 lxy=1
or lxy <<1
0.6
a
0.4 ¢ .
equation (24)
0.2 Oy =COya - Sinmt
0 Txy = Txya . Slnlxymt
0 0.2 04 06 08 1
' OxaD
ow

Fig. 7: fatigue limit curves for an alternating normal stress and an alternating torsional stress with
different frequencies

An interesting load case is that of a normal stress and a shear stress of different

vibrational frequencies. For instance, this case occurs with a shaft under bending and
torsional load, if the natural frequencies of the two vibrations are different. For this case, a
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simple, explicit, approximate equation can be derived with the SIH [11], if the
frequencies differ sufficiently,

2 2
T Oxs'T
(oo () o) e
Ow Tw W O 5n
In figure 7, equation (24) is compared with corresponding test results. Accordingly,
equation (24) is applicable for a frequency ratio ?»xy >or<2,

99-99 ' 1 i 1 1 L A 1 L L L L
SIHH
99.9 1 -] SH -
P [%] Xmin = 0,820 )(m;n = 0,820
991 Xmay = 1,201 T ] Xmax=1168 i
954 X=0,991 - 4 X=0,986 -
9071 s=0,074 - | s=0,068 i
801 -] -
707 - -
501 - R
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20 -] i
10 -] i
5- I R
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= OxaD,exp.

CGxaD,cal

Fig, 8: statistical distributions of the ratio of experimentally determined fatigue limit and the calcu-
lated fatigue limit

Finally, the improved shear stress intensity hypothesis is verified on the basis of the data
compiled in [11]. A total of 214 test series for multiaxial load cases with superimposed
mean stresses, with phase shifts, with various vibration forms and with frequency dif-
ferences among the stress components have been recorded in this data base. The ratio of
the experimentally determined endurance limit to the value calculated with the SIH has
been computed. The statistical distribution of this ratio is plotted on a Gaussian
probability grid, figure 8. On the average, the ratio is close to unity and exhibits relatively
low scatter (standard deviation: s=0.074), figure 8a. If the static failure limit is taken into
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account, and the maximal equivalent stress is limited to G,

vmax < I.1 Rpo,z- the scatter is
decreased even further (to s=0.068), figure 8b.

As further modifications of the SIH, the equivalent stress of the shear siresses, equations
(16a) and (16¢), can be extended by integration over the angle B, or larger values can be
selected for the exponents [, [y, v, and v,. However, this does not appreciably affect
the accuracy of prediction.

Conclusions

From the weakest link theory, the classical multiaxial criteria, the principal normal stress
criterion, the maximum shear stress criterion and the von Mises criterion, have been
derived as special cases. On the basis of this analysis, a general fatigue criterion is
formulated for multiaxial stresses. The existing multiaxial criteria of integral approach
and of the critical plane approach can be derived as special cases from the general fatigue
criterion. On this basis, a new modification of the shear stress intensity hypothesis STH
which provides satisfactory agreement between experimental and calculated results is
proposed.

An application of the proposed fatigue hypothesis to the service loading is also possible,
but has not yet been attempted. For this purpose, an examination is necessary, especially
to determine the extent to which the elastic-plastic cyclic deformation can and must be
taken into consideration in the strength analysis.

References

(1] Heidenreich R., Zenner H. and Richter I, (1983), Dauerschwingfestigkeit bei meh-
rachsiger Beanspruchung. Forschungshefte FKM, Heft 105

[2] Simbiirger A., (1975), Festigkeitsverhalten zaher Werkstoffe bei ciner mehrachsigen,
phasenverschobenen Schwingbeanspruchung mit korperfesten und veriinderlichen Haupt-
spannungsrichtungen. Diss. TH Darmstadt

[3] Zenner, H. and Richter L, (1977), Eine Festigkeitshypothese fiir die Dauerfestigkeit
bei beliebigen Beanspruchungskombinationen. Konstruktion 29, pp. 11-18

[4] Troost A. and El-Magd E., (1977), Allgemeine quadratische Versagensbedingung fiir
metallische Werkstoffe bei mehrachsiger schwingender Beanspruchung. Metall 31, pp.

60



[6] Ngkleby, J. 0., (1981), Fatigue under Multiaxial Stress Conditions. Report MD-81
001, Div. Masch. Elem., The Norw. Institute of Technology, Trondheim/Norwegen

[7] Bhongbhibhat, T., (1986), Festigkeitsverhalten von Stdhlen unter mehrachsiger pha-
senverschobener Schwingbeanspruchung mit unterschiedlichen Schwingungsformen und
Frequenzen. Diss. Unj. Stuttgart

[8] Troost A., Akin O. and Klubberg F,, (1987), Dauerfestigkeitsverhalten metallischer
Werkstoffe bei zweiachsiger Beanspruchung durch drei phasenverschoben schwingende
Lastspannungen. Konstruktion 39, pp. 479-488

[9] Mertens, H., 1988), Kerbgrund- und Nennspannungskonzepte zur Dauerfestigkeitsbe-
rechnung - Weiterentwicklung des Konzeptes der Richtlinie VDI 2226, VDI-Berichte Nr.
661, pp. 1-25

(101 Liipfert, H. P., (1989), B3BAF - Bewertung dretachsiger Spannungen. Schmierungs-
technik 20, pp. 125-127

(11T Liu J,, (1991), Beitrag zur Verbesserung der Dauerfestigkeitsberechnung bei
mehrachsiger Beanspruchung. Diss. TU Clausthal

(12) Liu J. and Zenner H,, ( 1993), Berechnung der Dauerschwingfestigkeit bei mehrachsi-
ger Beanspruchung, Mat.-wiss. und Werkstofftech. 24, part 1: pp. 240-249, part 2: pp.
296-303 and part 3: PP. 339-347

[14] Liipfert, H. P, (1994), Beurteilung der statischen Festigkeit und Dauerfestigkeit me-
tallischer Werkstoffe bej mehrachsiger Beansgruchung. Habilitationschrift TU Bergaka-
demie Freiberg

[15] Papadopoulos, LV, (1994), A New Criterion of Faligue Strength for Out-of-Phase
Bending and Torsion of Hard Metals. Int, J. Faligue 16, pp. 377-384

[16] El-Magd, E. and Wahlen V., (1994), Energiedissipalionshypothese zur Festigkeits-
rechnung bei mehrachsiger Schwingbeanspruchung. Mat.-wiss. und Werkstofftech, 25,
pp. 218-223

61



[17 Hifele, P. and Dietmann H., (1994), Weiterentwicklung der Modifizierten Oktaeder-
schubspannungshypothese (MOSH). Konstruktion 46 , pp.52-58

[18] Weibull W., {1939), A Statistical Theory of Strength of Materials. Ingenitrs Vetens-
kaps Akademiens Handlingar Nr. 151 Generalstabens Litografiska Anstalts Forlag,
Stockholm, 1939

[19] Batdorf, S. B. and Crose J. G., (1974), Statistical Theory for the Fracture of Brittle
Syructures Subjected to Nonuniform Polyaxial Stresses. 3. Appl. Mech. 41, pp. 459-464

[20] Batdorf, S. B., (1977}, Some Approximate Treatments of Fracture Statistics for Poly-
axial Tension. Int. J. Fract. 13, pp. 5-11

[21] Batdorf, S. B. and Heinisch H, L. Jr., (1978), Weakest Link Theory Reformulated for
Arbitrary Fracture Criterion. 1. Am. Ceram. Soc. 61, pp.355-338

[22 ] Evans A. G., (1978), A General Approach for the Statistical Analysis of Multiaxial
Fracture. J. Am. Ceram. Soc. 61, pp. 302-308

(23] Lamon ], (1988), Statistical Approaches to Failure for Ceramic Reliabilty Asses-
ment. J. Am. Ceram. Soc. 71, pp- 106-112

(24] Munz D. and Fewt T., (1989), Mechanisches Verhalten keramischer Werkstoffe. Ber-
lin: Springer-Verlag

[25] Scholz F., (1988), Untersuchungen zum statistischen GriBeneinflu bei mehrachsi-
ger Schwingbeanspruchung. Fortschritt-Berichte VDI, Reihe 18, Nr. 50, Ditsseldorf:
vDI-Verlag

[26] Ziebart W. and Heckel K., (1978), Ein Verfahren zur Berechnung der Dauerschwing-
festigkeit in Abhsingigkeit von der Form und der GroBe eines Bauteils. VDI-Z. 120, pp.
677-679

[27] Bohm J. and Heckel K., (1982), Die Vorhersage von Dauerschwingfestigkeit unter
Beriicksichtigung des statistischen GroBeneinflusses. 7. Werkstofftech. 13, pp.120-128

28] Heuser H., (1986), Funktionalanalysis. Stuttgart: B.G. Teubner

[29] Novoshilov V. V., (1961), Theory of Elasticity (8. J. Sherrkon trans.). Jerusalem: Is-
rael Program for Scientific Translation

62





