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ABSTRACT: In this siudy, the so-called zero approximation of homogenisation technigue for
micro-heterogeneous solids with periodic siructure has been applied to investigate struclural stresses
in spatially reinforced composite material, working in siructures, subjected to multiaxial loading and
high temperatures. Specifically, the carbon-carbon composite material, 3-D Carb, reinforced with
anisotropic fibers at three mutually orthogonal directions in ratio 1:1:1 has been considered.
According to the homogenisation technique, local functions, namely the components of elastic moduli
tensor and thermoelastic lensor of zero approximaiion, as well as macrostrain and temperature
should be defined 1o evaluate the structural siresses . The set of periodic problems has been solved
to obtain these local functions and effective thermoelastic constants. These constanis are used in the
solution of homogenised boundary value problem to evalunte macrostrains. The characteristics of
spatial distribution of the local functions have been analysed for different cases.

Notation
x=(%],X9,X3) relative coordinates in a solid;
o small tength scale ratio;
E= y s E=(8;,E4.89) local coordinates in periodicity cell;
a 1] H] ?
Y g 4
periodicity cell volume; Y = Zk= | Yy
Y, cell volume, occupied by fiber of k-direction (k=1,2,3) or
matrix (k=4).
() homogenisation operator,
1
(f)= ij(x,ﬁ) dg; d§, d&s3 5
Y
] displacement vector components;
Gijs €j; stress and strain tensor components;
AT=T-Ty, T- current temperature, Ty- temperature of undeformed
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state;

Cijkl ({3) elastic moduli tensor components;
Oy (E_') coefficients of linear thermal expansion (CLTE) ;
1 components of 4" rank unit tensor;
L :E(Sikﬁjl +5115jk)
&= (Eij ) macrostrain tensor components;
5= (Gij) macrostress tensor components;
hijkl effective elastic moduli;
ay effective coefficients of linear thermal expansion (CLTE) ;
E, v, G,a effective technical thermoelastic constants for 3- D Carb;
[[ £ ]] the gap of f value while transiting fiber -matrix interface;
vy fiber volume ratio;
Local functions for structural stress evaluation:
C Oiqu(ﬁ) clastic moduli of zero approximation;
[’)Oij (ﬁ) thermoelastic tensor components of zero approximation.

Indexes in thermoelastic constants:
m - matrix;

f - fiber;

L - longitudinal direction in fiber;
T - transversal direction in fiber;

Introduction

Carbon-carbon composite materials have a number of unique properties which
make these materials desirable for applications in some acrospace structures, working at
high temperatures [1]. One of such materials is 3-D Carb, periodically reinforced with
anisotropic carbon fibers at three mutually orthogonal directions in ratio k:1:1. The space
between fibers is filled with weak carbon matrix phase, which is treated as isotropic. The
model structure of such a material is obtained by parallel transfer of periodicity cells. Such
periodicity éell is shown on Fig.l. Machine compenents of this material is subjected to
high temperature field and multiaxial mechanical loading.

The computer modelling of damage accumulation in carbon matrix, carbon fibers

and fiber-matrix interface of composite structure subjected to thermomechanical multiaxial
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loading demands the evaluation of structural stresses field [2]. The direct evaluation by
numerical finite element analysis of stress fields in solid, containing great amount of
periodic cells, is, of course, impossible. The homogenisation method for heterogeneous

solids with periodic structure was developed to deal with this problem [3].

Fig.1 Periodicity cell of 3-D Carb composite.

This technique is based on the two length scale nature of the problem and construction of a

series solution of boundary-value heterogeneous problem in powers of small parameter o,

that relates the length scale of periodicity cell, the E- scale, to the scale natural for

describing the solid specimen geometry [4,5]. The so-called zero approximation of
homogenisation method for micro-heterogencous solids with periodic structure allows to
obtain rather good estimations for structural stresses if the size of periodic cell is much less
then characteristic size of macro-stresses alteration [3].

Firstly, we should solve a set of periodic problems to obtain local functions and
their gradients and construct the.so-callcd elastic moduli tensor and thermoelastic tensor of
zero approximation. Then we get the effective elastic constants and coefficients of linear
thermal expansion (CLTE) by volume averaging of the obtained tensor.

Secondly, we are to solve boundary-value problem of homogeneous anisotropic
solid with obtained effective elastic constants and CLTE, and evaluate macrostress and
macrostrain tensors.  The' temperature field is calculated as a solution of thermal
conducfivity problem. And at least the structural stress tensor can be evaluated by
summarising the results of multiplying the elastic moduli tensor 6f zero approximation by
macrostrain tensor and thermoelastic tensor of zero approximation by difference between

local and actual state temperatures.
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Local Functions and Effective Constants for Thermoelastic Problem.

The equations of thermoelastic boundary-value problem for heterogeneous solid

with periodic microstructure are written:

2 duy

ang' Cukl(x) a—xl —Ctk_l()()'AT(X) =0, (la)
du

Uy |py =ui’s Cijklﬁ njlrg = ;% (1b)

with Ty and Ty denoting parts of solid boundary where boundary conditions of the first

and the second mode are given. The first two terms of a series solution of boundary-value
problem (1) in powers of small parameter o are written as functions of “slow” coordinates

x and “'fast” coordinates £ :

avp(x)
Ui (x,E)=vi(x) +a Nipq(‘t:)a_x—"'@i(&) AT(x) (2)
q

Functions N, and ©;, depending on &, are & - periodical. One can cbtain strain

components by differentiating (2). In the process of differentiating, the variables x and

£ are divided according to:

—_— %
] X d Xp o ?)E_u
Zero approximation means that we retain terms only with zero power of parameter o in

expressions for sirains and stresses. The components of strain tensor in zero approximation

are:
€5 = Mijpq (€) e pq (X) +05(E) AT(x) (3)
where e;; are macrosirain components: e;; :(as--):l ai+al . and
’ - y 2 aXJ a)('l '
1{3Yipq anqu
Mijpq (€ =—[——+—- ; : Ch)
pq 2 ag] agl
Ulpq(g) =Nipq (€)+&q81p ) (5)
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_1[ae; 96;)
9;;(8) —5(8};] +'5EJ ; (6)

Applying homogenisation operator to (3), one can obtain
(Mipg®) )=Typgs  (95®) = 0; 7

Stress lensor components in zero approximation can be expressed through macrostrain

components and temperature, using (3):
035 =Cija (€g —0g AT) = COjpg (€ e (1) -B%(€) AT; (8)
Elastic moduli C 9 ipq(€) and thermoelastic tensor components pY; i{€) of zero
approximation in (8) are: )
COlipg (€)= Cypy ()M Kipq &) e
BY%H(E) = Bij(E) ~Cigg (©) D (&) (10)
where B (§) = Cyjy (€ a (§)

Applying  homogenisation operator to (R), one can obtain the relationship between
macrostresses and macrostrains together with temperature (homogenized thermoglastic

equations):
(Gij)=hiqu €pq —bjj AT = hyjpg (e pq —2,qAT), an

hjj,q and by being effective constants:

hijpq = (c“iqu ); bij = (ﬁoij). (12)
Effective coefficients of linear thermal expansion can be taken from:
Pijpqapq = bij (13)

The zero approximation of homogenisation technique include solving of homogeneous

boundary-value problem:

a aVk
i —— ~-a, AT |=0; 14
ijkl axj(ax, ag) ) (14a)
AT = §° 14b
Vi l‘U =Uui g ijkl aXl njlrs - i ( )
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Effeclive constants, that are necessary for the solution of this boundary-value problem can
be found from (12) and (13) after determining the corresponding periodical local functions.
Due to the symmetry of periodicity cell shown in fig.1, one can consider only 1/8 part of it
(fig.2).

Fig.2 1/8 part of 3-D Carb periodicity cell.

Note, that local functions Ujp, comply with differential equations that formally are the

equations of elasticity problem for displacements U; if we fix indexes p and q:

(pq)*

P 0 :
g[cij,d(!i) [;‘éfl“)J=o (15)
1

The local functions ©; comply with differential equations of thermoelasticity problem for

displacements ©; (temperature difference AT=1):

) IO
% Cij@ A @|=0 (16)

Functions My pq) (§) from (4) and 8y (§) from (6) act as strains while COipq (€)

from (9) and - Boij (E) from (10) act as stresses in these problems.

If there is an ideal contact in fiber- matrix interfaces in initial problem, then we have the

analogous conditions in fiber-matrix interfaces for cell problems:
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= 0;
for (16).

1-‘fm

[@owlben=v [l
[[Ui(pq)]”l"fm = 0. [[@i]]ll“rm =0.

Note, that general conditions of non- ideal contact, that keep the linearity of the problem
were written in [3]. The cell problems with linear conditions of “elastic sliding” were
solved, for example in [6]. One should take into account that non-linear contact conditions,
including fiber-matrix debonding lead to nonlinear problems, in which we can't solve the
periodicity cell problems and homogenised boundary problemn independently.
Because of the symmetry of the cell for considered structure (fig.1), it is sufficient to take
into account only two combinations of indexes p and q instead of six. These for instance are
1) p.q = 1,1 and 2) p,q = 1,2. Boundary conditions for cell sides in these problems are:
ypg=LL
Tangential components of quasi-stresses are equal to zero :
£ =0,1: CO%n =0; (1=1,2,3 j#i). ' (17a)

Normal compenents of quasi-displacements are equal to zero in all sides of the cell except
§1=1:

£;=0,i=123and £;=1,i=23 : Uy =0 & =1: Uy =1. (17b)
Dp.q=12

&1=0,1: COj2) =0, (j=13); Uygygy =0. (18a)
2 =0,].: C02j([2) =0, (j=2,3); &2 =0‘.U1(12) =0; E_,z = I:Ul(IZ) ={. (ISb)

E3=0,1: CY3j02) =0, (j=1,2); Us(z) =0. (18 c)

In thermoelastic problem (16) normal components of quasi-displacements and tangential

components of quasi-stresses are equal to zero in all sides of the cell:
£, =0,1: ©; =0, B%an =0; (i=1,23; j#0). (19)

The named boundary conditions provide the fulfilment of the relations (7), concerning

homogenised quasi-strains.
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Periodicity Cell Problems for the Carbon-Carbon Composite.
Effective constants.

The finite element model is used to investigate the above mentioned periodicity cell
problems. Tetrahedral finite elements with linear approximation of displacements are
utilised. 1/8 part of a periodicity cell is divided into parallelepipeds. Each one of them in its
turn is divided into six tetrahedrons by three cross-sections, parallel to coordinate axes and
-cofttaining side diagonals. The example of cell’s discretisation is shown in Fig.3.

Technical thermoelastic constants for fibers and matrix under three different temperatures
were taken from (1] and are given in Table 1. Note that carbon fibers possess severe

anisotropy.

After solving two elastic and one thermoelastic cell problem one can define effective
thermoelastic constants, using (12) and (13). For 3-D Carb composite we have three

independent elastic constants, hyyy,. hyjsy , hjp)» for instance. Effective technical

elastic constants can be calculated as:

2
2:h h
E=hyyy - uz” o, nZ_ oGy, 20)
by +hyy hyg+hyz

Effective CLTE is defined from (13) as:
a= by /(g +2-hy ). (21)

Two types of fibers cross- sections were taken into consideration: 1} square one and 2)

regular eight-sided polygon.
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&1

Fig. 3 Diseretisation of 1/8 part of 3-D Carb periodic cell.

3

&2

Table 1. Thermoelastic constants of fibers and matrix under different temperatures.

20°C 1000° C 2300° ¢
Elastic imoduli, GPa
‘ Ef 200 205 120
L
E{- 2.2 2.4 3.0
Gir . 34 4.0 6.5
EM 9.0 4.6 24
Poisson ratios
\{T 0.23 0.23 0.19
V%T' 0.16 0.16 0.16
Y™ 0.12 0.14 0.17
CLTE-10%, I/K
a{ -0.5 1.9 3.9
a»fr 6.0 97 12.8
o™ 4.3 6.6 8.6
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The effective thermoelastic constants for different fiber volume ratios: 0.1875;
0.4219 and 0.5 are posed in Table 2. The ratios 0.1875 and 0.4219 correspond to half-
width of square fibers 0.25 and 0.375 respectively. The analysis of the effective
thermoelastic constants for two types of cross-sections shows their practical coincidence

for the same fiber volume ratios.

Table 2. The effecfive thermoelastic constanis for 3-D Carb composite,

20° C O 1000°C 2300° C
v = 01875
E, GPa 19.8 16.9 9.94
v 0.052 0.041 0.053
G, GPa 3.58 2.09 1.25
a-10%, 1/K 1.59 3.39 5.57
v = 04219
E, GPa 33.3 32.2 19.2
v 0.27 0.021 0.029
G, GPa 3.03 2.13 157
a-106 1/K 0.49 2.63 4.90
A = 0.5
E, GPa 37.9 37.3 22.3
v 0.022 0.018 0.025
G, GPa 2.87 2.14 171
a 105 1/K 0.29 2.51 4.79

The local functions analysis.

We have tried to analyse the spatial distribution of “quasi-stresses” Coij(pq) ©.

(p.=1,1 and (p,g)=1,2 from (9) and -Boij (E) from (10), calculating some integral
characteristics. These characteristics are the mean values and measures of deviation from
them in that or other component of the composite, namely fibers of three mutually.
orthogonal directions and matrix. The mean value of a variable in a certain component with
number k ( k=1,2,3 corresponding to fiber of k-direction and k=4 corresponding to the

matrix) is obtained by volume averaging through this component of volume Yy:
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1
(Coij(pq) or 5°i1> =5 J oy or B%;) d, dt, at, 22)
k Yk Y,

The measure of deviation is taken analogically to standard deviation in probability theory

by replacing ensemble averaging by volume averaging:

Doij(pq) = J([Coij(pq) - (Coij(pq))k )2 > ' (23a)

k

80 = ‘/ < (8% - (8% ), )2 >k , (23b)

. The relative characteristic of the deviation, the variation factor of a variable, can be

calculated by dividing the “standard deviation” from (23} by corresponding mean value

within a component from (22).
1. The cell problem with (p,q) = (1,1) - uniaxial deformation in &, direction.

The tensor component C? 11 = Chiupy in the fiber 1 (of & direction) has a scatter of

about 1% at 20° C (vi=0.42 and v; = 0.3) and a scatter < 1% in all other considered
cases, The tensor components in the transversal directions in fibers have maximum values

in &, direction in fibers 2 and 3. The results for C%ay are summarized in table3 for two

types of fiber cross-section, with variation factor placed in parentheses.

Table 3. The local functions characteristics (C°11(11))y, /D®1s(1s) in fibers 2 and 3.

20°C 1000° C 2300° C
v = 01875 _
square 3.61/0.44(12%) 3.23/0.21(7%) 2.82/0.06(2%)
polygon 3.55/0.23(6%) 3.03/0.11(4%) 2.82/0.03(1%)
v = 04219
square 3.16/0.5/(16%) 3.0/0.24(8%) 2.9/0.07(2%)
polygon 3.15/0.39(12%) 3.0/0.2(6%) 2.89/0.06(2%)
¥ f = 05
square 3.04/0.52(17%) 2.91/0.25(9%) 2.92/0.08(3%)
polygon 3.01/0.42(14%) 2.91/0.21(7%) 2.91/0.07(2%)

277




Maximum normal components of elastic moduli tensor in matrix are shown in Table 4.
The mean values of shear components of this tensor in matrix are more than 10 times less

than mean values of normal components in all cases.

Table 4. The local funclions characteristics (C° 11(11)) / D”11(11) in matrix (Gpa).
4

20° C 1000° C 2300° C
v¢=0I875
square 8.44/1.61(19%) 4.56/0.43(9%) 2.62/0.07(3%)
polygon 8.47/1.57(18%) 4.56/0.48(10%) 2.62/0.07(3%)
v = 04219
square 7 47/2.11/(28%) 4.32/0.6(14%) 2.66/0.11(4%)
polygon 7.4712.0(27%) 4.31/0.75(13%) 2.66/0.10(4%)
¥ f = 0.5
square 7.13/2.15(30%) 4.24/0.58(14%) 2.68/0.11{4%)
polygon 7.21/2.0(28%) 4.24/0.58(14%) 2.68/0.11(4%)

2. The cell problem with (p,q) = (1,2) - shear deformation in (€,.52) plane.

The characteristics of shear “quasi-stresses” with maximum mean values are placed in
Table 5 for fibers of | and 2 directions and in Table 6 for matrix. The mean values of this
“quasi-stress” in fiber of 3 direction is lower than the mean values from Table 5 for

corresponding cases with variation factor not exceeding 7%.

3. Thermoelastic cell problem.

When evaluating structural stresses according to (8) we are to multiply the thermoelastic
tensor by temperature difference. Such products are given in Table 7, where normal
component of thermoelastic tensor are presented. The shear components are much less than

normal ones, even in matrix. -

The data obtained in thermoelastic celt problem show that practically the spatial
distribution of normal components of “quasi-stresses” in fibers is uniform and their mean

values are almost constant for different fiber volume ratios and forms of cross-sections.
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Table 5. The local functions characteristics (C°1z (12) )k /1 DY 2(12) infibers1land2

20°C 1000° C 2300° C
v = 01875
square 3.29/0.3(9%) 2.63/0.22(8%) 2.0/0.3(15%)
polygon 3.32/0.26(8%) 2.61/0.18(7%) - 1.93/0.09(5%)
v = 04219
square 2.82/0.53/(19%) 2.49/0.38(15%) 2.19/0.42(19%)
polygon 2.88/0.51(18%) 2.49/0.35(14%) 2.11/0.25(12%)
Y 3 = 05
square 2.67/0.58(22%) 2.45/0.43(18%) 2.29/0.48(21%)
polygon 2.75/0.56(20%) 2.46/0.41(17%) 2.23/0.34(15%)

Table 6. The local functions characteristics (Cou(n))‘ ! Dolz(lz) in matrix.

20° C 1000° C 2300° C
v = 01875 ,
square 3.68/0.41(11%) 2.03/0.22(11%) 1.13/0.24(21%)
polygon 3.74/0.42(11%) 2.03/0.23(11%) 1.14/0.22(19%)
v = 04219
square 3.28/0.53/(16%) 2.03/0.31(15%) 1.29/0.38(30%)
polygon 3.39/0.57(17%) 2.05/0.31(15%) 1.3/0.34(26%)
A" f= 05
square 3.15/0.53(17%) 2.03/0.31(16%) 1.35/0.42(31%)
polygon 3.32/0.6(18%) 2.06/0.33(16%) 1.36/0.37(27%)

Table 7. Characteristics of b j-AT at 2300° in fibers and matrix (Mpa).

(6% )- AT/ 8%

(050 AT/8% AT (6%:) AT/ 8% -AT

in fiber k. in fiber k (j;e k) in matrix
Y= 0.1875
square 1083/ 1(<1%) 106/3(3%) 75/4(6%)
polygon 1083/1(<1%) 106/1(1%) 75/4(5%)
vy = 04219 _
square 1086/3{<1%) 111/3(3%) 79/6(8%)
polygon 10B5/2(<1%) 111/3(2%) 79/6(7%)
Y i 05
square 1086/3(<1%) 113/4(3%) 80/7(8%)
polygon 1086/3(<1 %) 113/3(3%) 80/6(8%)
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Conclusions

The zero approximation of homogenisation technique for micro-heterogencous
solids with periodic structure has been applied to evaluate the structural stresses in spatially
reinforced at three mutually orthogonal directions carbon-carbon composite material,
working in structures, subjected to multiaxial loading and high temperatures. Thé finite
element procedure has been used to solve a set of periodicity cell problems and the local
functions, namely the components of elastic moduli tensor and thermoelastic tensor of zero
approximation, have been defined. The spatial distribution of these functions has been
investigated and the their mean values within fibers of different directions and matrix
together with measures of deviation from these values have been analysed for various fiber
volume ratios, forms of fiber cross-sections at three different temperatures. This form of
data representation is convenient for modelling of démage accumulation in fibers and
matrix. The effective thermoelastic constants have been calculated for cases considered.
We nced these constants to solve homogenised thermoelastic boundary-value problem to
evaluate macrostrains and at least obtain the structural stresses at multiaxial loading of

heterogeneous structure, using the local functions obtained.
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