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ABSTRACT: Two methods that allow 10 predict the fracture plane ovientation are presented and
compared in this paper. The first one is a siaiistical approach which is based on the variance of an
equivalent stress. It is assumed that the fracture plane is the one where the variance of a linear
combination of the shear and normal stresses acling on this plane is maximum. The second one uses
the so-called damage indicator of a mdtiaxial fatigue criterion, which is based on the research of the
critical plane. The formulation of the criterion involves shear and normal stress amplitudes and
mean normal siress. The fracture plane is the critical plane, it is to say the one where ihe damage
indicator is the highest. A comparison of the two methods against experimental results is made for
multiaxial cyclic and random stress states.

Introduction

Most mechanical components or structures are nowadays designed as fatigue-prone
components. The industrial purpose is to improve their service safety to avoid mechanical
failures and to lower the cost of maintenance. This is why many industrial engineers or
academical researchers have worked during the last decades both on experiments and
theoretical fatigue models to improve the understanding and modelling of the fatigue
behaviour of materials. The major objective in fatigue is to assess the fatigue life of the
component submitted to variable loading. This induces various states of stress in any point
of the structure. The fatigue assessment is realized everywhere in order to find out the
critical area of the component. An important point of fatigue behaviour models is the

determination of the crack initiation plane because it is required to calculate the fatigue life.
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The so-called critical plane is the one where the crack initiates and will develop. The
material life can then be established through the normal and shear stresses that are applied
on it.

The aim of this paper is to present and discuss two different methods for
determining the crack initiation plane. One is a statistical approach that is developed by the
Departement of Mechanics and Machine Design of the Technical University of Opole
(Poland) (1). The second one is a stress-based approach that is proposed by the Laboratory
of Solid Mechanics of INSA Lyon (France) (2)

The Polish point of view is the so-called variance method. An equivalent stress is
calculated with respect to a fatigue criterion. The assumption is made that the critical plane
is the one where the variance of the equivalent stress is maximum.

The French method uses a multiaxial fatigue criterion that defines a damage
indicator E,, for any physical plane. The crack initiation plane is assumed to be the critical
plane, i.e. the fracture plane. The steps of the two procedures are detailed in the next
sections.

The validation of the two methods against some experimental cyclic and random
biaxial fatigue tests results is realized. The predicted crack initiation planes are compared
with experimental ones. An extension of the two methods to multiaxial randotn stress states
is then proposed. Tests carried out in the Polish laboratory allow to compare the assessed
orientation of the fracture plane with the one observed on cruciform specimen submitted to

biaxial random tensile-compressive loads.

Presentation of the variance method

Multiaxial stress states due to the action of various external loads exist at the
considered point of the machine or structure. In the proposed algorithm the multiaxial stress
states history is reduced to an uniaxial equivalent one by a maximum shear and normal
stresses criterion (1). It is assumed that the fracture is influenced only by those stress
components which act on the expected fracture plane(s). The generalized criterion is

formulated as :
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max{Bty(t)+ Koy (t)} = F )
t

where T, (t) and oy (t) are respectively shear stress in § direction and normal stress acting

on the critical plane, which unit normal vector is denoted h. The direction § agrees with

the mean direction of the maximum shear stress Thsmax(t- Tns{) and Gp(t) are functions of

stress components Gij(t) (i, j=1x,y 2z B, K and F are constants of the criterion. K is

2
— G, _
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where ¢_) and 1_; are the material fatigue limits determined during completely reversed

expressed as ;

tensile and torsion tests respectively (R=-1).

In particular case of the criterion (B=1) the equivalent stress Geq(t) is defined as :

1 -
ch(t)':m{'{[ll 12 +K(II +1, ]d [m[ -f3 +K(, +m3)2]0”(t)+
+[ﬁ,2 - 73 + K(f, + ﬁ3)2}5u(t) +2[T,ﬁ1, —Tqihy + K(f, +f3Xﬁ1, +ﬁ13)]u w(D+
+2[T,ﬁ, - Ty + k(] +1, YA, +ﬁ3)]0 O

+2[f; iy — Ay + K(f; + A, )(ih, + m])]syz(t)} (3)

where 1, iy, fi;, (n=1,2,3) are mean direction cosines of principal stresses written so that

0,(t) 20,(t)264(t). These direction cosines are used in the description of the expected

fatigue fracture plane which is determined using direction cosines of its normal vector h :

~

i‘ _11+13
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fiyy, = fip = 4)

From equation (3) it appears that Gq(t) is linearly depending on the stress state

components G;;(1). This can be simply written as :
6

6= 3%, (1) ®

k=1
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where : X, (t) =0, (t), Xp(t)=0,(1), X;3()=0,(1),
X4(t)=0xy(t)’ XS(I)=0—XZ([)’ Xﬁ(t)=cyz(t)'

The variance of the equivalent stress can be calculated as :
6 6
M'crm1 (l)=22asatu’m (6)
s=1 1=1
where |1, are the components of the (6x6) covariance matrix of the variables X.

A
~ A

In general case the variance Uy, depends on the direction cosines 1;, my, n,

(n=1,2,3) which have to fulfil 6 conditions of orthogonality. Practically, the direction

cosines are expressed as functions of the three Type 1 Euler angles v, 6, ¢ (see figure 1)

Zox

Z;,

1

Fig.1 Type 1 Euler angles.

By this way, the variance of the equivalent stress can be wrilten as :
M, = FW.0,90,K i) N

As K and p, are constants, g, depends on the three parameters ¥, 6, ¢. The

determination of the maximum value of this function is generally not possible in an
analytical way. Then it is numerically calculated.

In the case of multiaxial stationary and ergodic random stress history, the
determination of the fracture plane is quite simitar. The variance matrix is calculated from

the representative parts of the stress histories and then the set of critical Euler angles (y,

9., 9,) that gives the highest value to the variance of the equivalent stress is searched.
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Presentation of the damage indicator method

Fracture plane assessment under cyclic stress states

The method which is developed in this section is a deterministic one with respect
to the former. First, it is presented for a cyclic stress state [o(t)] that is known at the
considered point M where the fatigue damage assessment is realized. The criterion defines a

time dependent damage indicator E,(t) for any physical plane which unit normal vector is
denoted h . This damage indicator is a linear combination of the alternate shear stress ,,,(0),

the alternate normal siress Oy, (t) and the mean normal stress Oy, (2} as

Eh(t)=e—é\,—)[r..a(t)+a(N)ohha<n)+B(N)cm,m] @®)

The damage indicator Fy, corresponding to the physical plane is defined as the maximum

value of E,(t) during the cycle.

E, = mtax[Eh(t)] 9

In this criterion, the normal and shear stress are distinguished as it is well recognized they
do not have the same influence in fatigue. Concerning the normal stress, mean and alternate
stresses are also separated because they do not have the same incidence on the fatigue
behaviour of materials, as the tensile-compressive constant life diagram (Haigh diagram)
demonstrates these differences of influence. The mean shear stress does not appear in the
formulation of the damage indicator as it is generally assumed to have no practical influence
on the fatigue behaviour.

The coefficients o and [ describe the respective contribution of the stresses
components to fatigue damage.

The critical plane (i.e. fracture plane) which unit normal vector is denoted Ec is the

one for which the damage indicator is the highest .This maximum value is the fatigue

function E of the criterion.

E=E; =max[E] (10)
* h
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E is generally used in order to check if a given multiaxial stress states cycle reaches the
fatigue limit or the fatigue strengths (corresponding to N cycles) of the material. This is
expressed as :

E=1 (1n

o,  and 8 are the three parameters of the criterion. They are determined by stating that the
criterion is checked (B=I) for the three fatigue limits of the material, or its three fatigue
strengths corresponding to N cycles when the criterion is used as a N cycles fatigue
criterion. In other words, it means that the criterion may be utilized as well for endurance
limit as for finite fatigue lives (2,3,4).

A physical plane is determined by the two angles ¥ and ¢ as shown on figure 2. All the

possible physical planes of the material are reviewed.

Fig.2 Location of a physical plane.
The alternate normal stress o (t) is calculaied with :
G a (1) =01 (t) = O i (12)

where Oy, is the mean value of op,;,(t) during the stress cycle :
t - -
om(t)= {afo(OKh} (13)

The alternate shear stress 7;,(1) is defined by a geometrical method. During a cycle,

the tip of the shear stress vector acting on the plane makes a closed loop. The smallest circle

surrounding to this loop is built (figure 3).
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Fig.3  Definition of the alternate shear stress vector 7, (t).

The center of the circle gives the mean component Ty, of the shear stress vector

% (t) during the cycle. The alternate shear stress vector T, (1) is obtained by :
Tra(t) =T (1) =T (13)

Fracture plane assessment under multiaxial random loading

The concept of a plane by plane damage cumulation is used for this purpose. The
multiaxial random stress states history is decomposed into cycles by the way of the
definition of a counting variable and the application of the Rainflow counting procedure to
this variable. The normal stress acting on a physical plane is used as the counting variable
(3). A multiaxial cycle is identified and extracted from the multiaxial stress history when a
cycle of the counting variable is obtained from the corresponding part of the multiaxial
history,

The criterion allows to calculate the life of the material through equation (10),
plane after plane as shear and normal components of stresses are known for any plane. A
dawnage law such as Miner's rule allows to determine the corresponding damage induced by
the multiaxial cycle on that plane. The calculations are made for all the possible physical
planes and for all the stress cycles. A damage cumulation is performed plane by plane for
the whole multiaxial sequence (4). Finally, the most damaged plane is assumed to be the

critical one, i.e. the fracture plane.
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‘Comparison of both methods against experimental results

An experimental verification is realized in order to validate the methods. It is based
on the results obtained from fatigue tests of specimens under biaxial cyclic and random
states of stress. They are issued from experiments found in literature connected with fatigue
fracture planes. Collected tests results are those for which fatigue material data are complete
- that is necessary for the application of the two methods - and fracture planes orientations

are precisely described.
Cyclic biaxial stress states fests

Six sets of experimental results (carresponding to 86 tests) were collected and are
given in table I. Rotvel (5) made his experiments with cylindrical 0.35% carbon steel
specimens. Biaxial sinusoidal tension-compression stress states were generated with
different values of mean stress and for some cases out of phase. Nishihara and Kawameoto
(6) obtained the orientation of the fracture planes under complex bending and torsion cyclic
' tests. Various ratios of stress amplitudes and many different dephasings are provided.
Round specimens were used and several materials are investigated : 0.51% carbon hardened
steel, 0.1% carbon mild steel, 3.87% carbon cast iron and 3.81% Cu duraluminium.
Achtelik et al. (7) tested grey cast iron ZI 250 (3.32% C) round specimens under bending-
torsion stress states.

Table 1. Cyclic stress states and fatigue data

Material : carbon steel 0.35% C, 0_=215.8 MPa, 0'0=34_9.9 MPa, T_l=l38.5 MPa, Rm=570 MPa (5)

Test number Stress states
Oy (l) Ty (t)

1 227.6 sin{w) 1.96 sin(t)

2 -2.94 + 224.6 sin(wt) 6.97 sin{ol + )

3 52 + 233.5 sin{wl) 41,2 + 191.3 sin(ut)

4 -11.8 + 228.6 sin(wt) -24.5 + 117.7 sin(wb)
5 -7.8 + 136 sin(wt) 1177 + 121.6 sin(ot + x)

6 79.5 + 155 sin(wt + 1) 118.7 sin{cot)
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Material : hardened steel 0.51% C, ©.,=313.9 MPa, ,;=485.8 MPa, T,,=196.2 MPa, Rm=694 MPa (6)

Test number Stress stales
0 a,()

HNKS50 0.0 225,63 sin{wt)
HNKS53 353.16 sin(wot) 0.0
HNX54 0.0 201.11 sin{we)
HNKS55 323.73 sin(ut) 0.0
HNK59 294,30 sin(et + 1/2) 147.15 sin(wt)
HNK60 274.68 sin{wn) 137.34 sin(wt)
HNK63 264.87 sin(wt + 7/2) 132.44 sin(w
HNK67 162.85 sin(ot + 1/2) 196.69 sin(ct)
HNK6Y 154.45 sin{ot + w/2) 184.23 sin(cwt)
HANK74 162.85 sin(wn 195.69 sin(ot)
HNK75 308.03 sin{wt) 63.86 sin(ot)
HNK76 141.85 sin(wt) 171.28 sinfwh)

Material : hardened steel 0.5]1% C, G_=313.9 MPa, G=485.8 MPa, 1,=196.2 MPa, Rm=694 MPa {6)

Test number Stress slales
64 () o, (0)
HNK79 344.33 sin(wt) 71.32 sin(wt)
HNK323 344.33 sin{wt + 1/2) 71.32 sin{wt)
HNK84 157.65 sin(ont + #/3) 190.31 sin(wt)
HNKS86 308.03 sin(et + /3) 63.86 sin(wt)
HNK89 255.06 sin(mi) 127.53 sin(wt)
HNK90 264.87 sin{owt + n/3) 132.44 sin{wt)
HNK91 255.06 sin(on + 7/3) 127.53 sin(ot)
HNK9%4 147.15 sin(wt + 1/3) 177.56 sin(wt)
HNK96 141.95 sin{wt + /6) 171,18 sin{cr)
HNK97 152.35 sin(ot + 1/6) 183.94 sin{amt)
HNK98 264.87 sin{wt + 1/6) 132.44 sin(cot)
HNK99 255.06 sin(wt + /6) 127.53 sin(wt)
Material : soft steel 0.1% C, G, ,=235.4 MPa, 0,=325.7 MPa, 1, =137.3 MPa, Rm=382 MPa (6)
Tesl number Stress slates
[+ 0 (l) a xy (t)

LNKS5 194.30 sin(wt) 0.0
LNKII 0.0 142,25 sin{wt)
LNK12 187.12 sin(mwt) 93.59 sin{oot)
LNKI6 101.34 sin{wt) 122.33 sin{wt)
LNK18 235.64 sin(mt) 48.85 sinf{wt)
LNK22 235.83 sin(wt + /2) 117.92 sin(ct)
LNK24 208.07 sin{wt + 1/2) 104.08 sin{mwt)
LNK27 112.62 sin{wt + n/'2) 135.97 sin{cot)
LNK28 244.76 sin(mt + /2) 50.72 sin{mt)
LNK29 235.64 sin(wt + 7/2) 48B.85 sin(wt)
LNK31 201.11 sin{wt + n/3) [00.55 sin{wt)
LNK32 194.24 sin(ot + n/3) 97.12 sin{wt)
LNK35 245.25 sin{ot) 0.0
LNK36 105.16 sin(ot + /1) 126.84 sin(at)
LNK40 108.89 sin(od + w/3) 131.45 sin{omt)
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Material : cast iron 3.87% C, c_|=96.1 MPa, cru=I42.3 MPa, 1:_l=9l.2 MPa, Rm=185 MPa (6)

Test number Stress states
Oy (t) g xy (l)

CNK4 103.0 sin(wt} 0.0
CNKo 96.19 sin{wmt) 0.0
CNK?7 83.38 sin{tot) 41.59 sin(w1)
CNK12 95.16 sin(wt) 19.72 sin(wt)
CNKi6 104.18 sin(et + w2} 21.58 sin(ut)
CNKI19 99.57 sin{et + #/2) 20,6 sin{@L}
CNK23 56,31 sin(wt) 67.98 sin{wt)
CNK30 93.68 sin{ot + /1) : 46.89 sin(wt)
CNK33 67.59 sin(oX + 1/3) 81.62 sin{of)

Material : cast iron 3.87% C, ¢,,=96.1 MPa, o,=142.3 MPa, T =91.2 MPa, Rm=185 MPa (6)

Test number Stress slales

0. () o)
CNK36 0.0 98.1 sin(at)
CNK38 75.05 sin{ot + 1/2) ©0.64 sin(wt)
CNK39 71.32 sin{et + T2} 86.13 sin(wt)

Material : duraluminium 3.81% Cu, G‘F}jﬁ MPa, O'u=257.l MPa, =100 MPg, Rm=443 MPa (6)

Test number Slress sates
F ax (t) g xy (l)

D-302 0.0 98.1 sin{wt)
D-305 0.0 127.53 sin{tt)
D-306 156.96 sin(o1) 0.0
D307 196.2 sin(wt + ©/2) 0.0
D-308 181.29 sin(a + 1/2) 37.57 sin{wt)
D-30 12 152,55 sinfwt) 76.32 sin(mt)
D-30 15 138.7 sin{owt + /2) 69.36 sin(wn
D-30 16 124 88 sin{wt) 62.49 sin{mt)
D-30 17 163. 14 sin(ot) 33,75 sin{wt)
D-30 19 1§7.92 sin(ot + 1/2) 58.96 sin{wl)
D-3020 82.6 sin{wl} 99.67 sin{t)
D-30 22 199.44 sin{at) 41.3 sin(wl)
D-3023 19944 sin{wt + /2) 41.3 sin{mt)
D-3024 82.6 sin{ot + 1/2) 99.67 sin(t)
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Mnterial : grey cast iron 3.32% Cu, G =143 MPa, a,=212.7 MPa, T,=110 MPa, Rm=278.8 MPa (7}

Test number Stress states
6, (1) o, (1)

Zlai 168.0 sin(cr) 0.0

Zla 2 164.0 sin{mt) 0.0

Zla i 160.0 sinf{wt) 0.0

Zlb 1 0.0 142.0 sin{wt)
Zb 2 0.0 130.0 sin{wt)
Zlb3 0.0 132.0 sin(cr)
Zlc | 149.9 sin{wl1) 74.95 sin{tt)
Zlc 2 12}.62 sin({wt) 60.81 sin(wt)
Zlc 3 118.79 sin{mt) 59.4 sin(wt)
Zid 1 176.67 sin{tt) 51.0 sin{wt)
Zld2 155.88 sin{wt) 45.0 sin(wt)
Zld 3 152.42 sin{w1) 44.0 sin(wt)
Zle | 1 18.0 sin(wt) . 102.2 sin{cot)
Zle 2 108.0 sin{wt) 93.53 sin{wt}
Zle 3 106.0 sin(w1) 91.78 sin(ai)

Random biaxial stress state tests

Some biaxial random tension-compression fatigue tests have been carried out in the
Technical University of Opole (Poland) by W. Bedkowski (8) and E. Macha. Low carbon
steel (10 HNAP) thin walled cruciform specimens were used. The table 2 gives the chemical
composition of this steel. Ten different random sequences were generated by a random

signals generator. The track of the fracture plane with the (O, x, y) free surface plane was

observed through angle o, as shown on figure 4. The unit vector h r normal to this fracture

plane is such that : (ﬁ, , R') =q, +90°.

Fig.4  Cruciform specimen description.
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Table 2. Chemical composition of the 10 HNAP steel,

Elements

C

Mn

Si

P

S

Cr

Cu

Ni

Content [%]

0.115

0.71

0.41

0.082

0.023

0.81

0.30

0.50

Fracture plane orientation results

The experimental fracture plane is defined by its unit normal vector h o~ Predicted

fracture planes are defined by the theoretical unit normal vector E“ and Et?, for variance

and damage indicator methods respectively. In the case where several assessed fracture

plane are obtained, the most similar to that obtained experimentally is assumed. The

suitability of the predicting methods is measured by the closeness of the theoretical and

experimentally observed fracture planes, it is to say by the closeness of the corresponding

unit normal vectors h  and h, 112~ The dot product of these vectors is calculated to express

the agreement (or disagrement) between assessments and tests results.

cyclic tests and in table 4 for biaxial random tests.

The direction cosines of vectors Er, E, | and le are reported in table 3 for biaxial

Table 3. Experimental and predicted fracture plane ortentations {cyclic stress states)

Test real cosines directions theoretical variance theorelical damage indicator
number cosines direclions cosines directions
I, m, n ln myy hy f'r'l“u L My, b Br'}"lz

1 1.0 0.0 0.0 0990 0.143 0.0 0.990 0.845 0.074 -0.530 0.B45
2 1.0 0.0 0.0 0.990 0143 0.0 0.990 0.842 0526 0.122 0.842
3 1.0 0.0 0.0 0990 0143 0.0 0.9%0 0.848 0.0 -0.530 0.848
4 1.0 0.0 0.0 6.990 0.143 00 0.990 0.832 0.0 -0.545 0.339
5 1.0 0.0 0.0 0.990 0.143 00 0.990 0.829 0559 0.0 0.829
6 1.0 0.0 0.0 0990 0143 0.0 0.990 0.848 0530 00 0.848
HNKS0O 071 071 0.0 0.791 0.612 00 0.996 0982 0.1%1 0.0 0.832
HNK5S3 1.0 0.0 0.0 0992 0126 00 0.992 0.833 -0337 0438 0.833
HNK54 071 071 00 0791 0791 0.0 0.996 0982 0191 00 0.832
HNKSS 1.0 0.0 00 0992 0126 0.0 0.992 0.835 0543 0.087 0.835
HNK59 1.0 0.0 0.0 0992 0.124 0.0 0.992 0.875 -0485 G.D 0.875
HNK6O 092 038 0.0 0.965 0.264 0.0 0.988 0978 -0208 0.0 0.821
HNK63 1.0 0.0 0.0 0992 0124 0.0 0.992 0.876 -0.466 0.122 0.876
HNK67 091 041 00 0.848 0.530 0.0 0,990 0988 0.156 0.0 0.963
HNK69 088 047 00 0,848 053 0.0 0.995 0985 0.174 0.0 0.948

534



HNK74 082 057 0.0 0.755 0.655 0.0 0.992 0375 0927 0.0 0.836
HNK75 098 019 0.0 0.998 0.069 0.0 0.991 0.927 -02375 0.0 0.837
HNK76 083 056 0.0 0.755 0655 0.0 0.993 0375 0927 0.0 0.830
HNK79 098 019 0.0 0998 0.069 0.0 0.991 0927 -0374 0.035 0.837
HNK83 |0 0.0 0.0 0.992 0.126 0.0 0.992 0.837 0483 0259 0.837
HNK84 092 039 0.0 0.881 0473 0.0 0.995 0999 0.052 0.0 0.939
HNK86 1.0 0.0 0.0 0992 0126 0.0 0.992 0.837 0483 0.259 0.837
HNKB? 093 037 00 0965 0264 00 0.995 0982 0.191 0.0 0.843
HNKS0 099 €14 0.0 0983 0.181 0.0 0.999 0978 -0.208 0.0 0.939
HNK91 099 014 090 0983 0.181 0.0 0.999 0.978 0.-208 0.0 0.939
HNK94 093 037 00 0.881 0473 0.0 0.994 0939 0.053 0.0 0.948
HNK9% 085 053 0.0 0.892 0452 00 0.998 1.0 0.0 0.0 0.850
HNK97 092 039 0.0 0892 0452 0.0 0.997 1.0 0.0 0.0 0.920
HNK98 096 028 00 0.968 0.251 0.0 1.0 0978 -0.208 0.0 0.881
HNK%2 096 028 0.0 0968 0251 00 1.0 0.978 -0208 00 0.881
LNKS Lo 0.0 0.0 0.997 0.077 0.0 0.997 0810 0487 0326 0.81¢
LNKI1 071 071 0.0 0.764 0.645 0.0 0.9%6 0990 0.139 0.0 0.802
LNKIZ 093 037 00 0.953 0303 00 0.998 0.970 -0.242 0.0 0.813
LNK16 087 049 0.0 0.874 0486 0.0 0.999 0.9%9 -0.052 0.0 0.843

Test real cosines directions theoretical variance theoretical damage indicator

number cosines direclions cosines directions
1 m_n by my  ony  Bochy 1y, omy,  onp, h, hyp

LNKI8 098 020 0.0 0961 0276 0.0 0.997 0.680 0.730 0.07 03813
LNK22 099 014 00 0.997 0.077 0.0 0.998 0.875 0485 0.0 0.934
LNK24 099 014 00 0997 0077 0.0 0.998 0875 0485 040 0.934
LNK27 078 063 00 0.826 0.564 0.0 0.999 0.999 0.139 0.0 0.860
LNK28 1.0 0.0 0.0 0.997 0.077 0.0 0.997 0.810 0487 0326 0310
LNK29 1.0 0.0 0.0 0997 0077 0.0 0.997 0810 0487 0326 08i0
LNK3l 099 0.4 00 0975 0222 00 0.996 0970 -0.242 0.0 0.927
LNK32 098 020 00 0.975 0.222 0.0 [0 0.970 -0.242 0.0 0.903
LNK35 L0 0.0 0.0 0.997 0.077 0.0 0.997 0.810 0487 0326 0.810
LNK3I6 093 037 00 0861 0509 0.0 0.989 0999 0.017 0.0 0.936
LNK40 092 0.14 00 0.860 0512 0.0 0.923 0999 0017 00 0.992
CNK4 Lo 0.0 0.0 0.848 0.530 0.0 0848 0991 -0.052 -0.122 0.991]
CNKo6 1.0 0.0 0.0 0.848 0.530 0.0 0.848 0.991 -0.052 -0.122 0.991
CNK7 091 o041 00 0.986 -0.166 0.0 0.848 0.865 0.499 .0.052 0.992
CNKI2 098 020 00 0.7290 0.684 0.0 0.851 0946 0326 0.0 0.992
CNKI6 1.0 0.0 0.0 0848 0.530 0.0 0.848 0.991 -0.052 -0.122 0911
CNK19 1.0 0.0 0.0 0.848 0530 0.0 0.848 0991 -0.052 -0.122 0.911
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CNK23 083 056 0.0 0999 0.032 0.0 0.867 0.731 0682 0.0 0.989
CNK30 096 028 00 0976 -0216 0.0 0.876 0982 0.191 0.0 0.996
CNK33 084 054 00 0996 0087 0.0 0.887 0.891 0.454 00 0.994
CNK36 071 071 00 0974 0226 0.0 0.857 0309 0.588 0.0 0.992
CNK38 079 061 00 0983 0183 0.0 0.888 0.857 0515 0.0 0.991
CNK39 080 060 00 0983 0.183 0.0 0.896 0.857 0.515 0.0 0.995
D-302 1.0 0.0 0.0 0801 -0.598 0.0 0.801 0996 0.087 0.0 0.996
D-305 1.0 0.0 0.0 0.801 -0.598 0.0 0.801 09% 0.087 0.0 0.996
D306 097 024 00 0990 0.141 0.0 0.994 0.846 0529 0.070 0947
D-307 098 020 00 0990 0.141 0.0 0.998 0.846 0.529 0070 0.935
D-308 088 047 00 0999 0045 0.0 0.900 0.896 0545 00 0.994
D-3012 087 049 00 086 0510 0.0 0.9%8 0574 0.819 00 0.900
D-30415 1.0 0.0 0.0 09%0 0.141 0.0 0.990 0.882 -0469 0.052 0.882
D-3016 082 057 00 0.860 0510 0.0 0.9%96 0.574 03819 0.0 0.937
D-3017 080 060 00 0.943 0334 0.0 0.995 0719 0.695 0.0 0.992
D-3019 1.0 0.0 0.0 0990 0.141 0.0 0.990 0.882 -0.469 0.052 0.882
D-3020 1.0 0.0 0.0 0.903 0429 00 0.903 1.0 0.0 0.0 1.0

D302z 082 057 00 0943 0334 0.0 0.964 0.719 0695 0.0 0.986
D-3023 085 053 00 0.990 0045 0.0 0.873 0.839 0545 00 1.0

D-3024 1.0 0.0 0.0 0.857 -0.515 0.0 0.857 0999 -0.052 0.0 0.999
Zlal L0 0.0 0.0 0.960 0.281 0.0 0.960 0916 -0370 0.156 0916
Zla2 1.0 0.0 0.0 0960 0281 0.0 0.960 0916 -0.370 0.156 0916
Zlal 1.0 0.0 0.0 0960 0281 00 0.960 0916 -0370 0.156 0.916
Zlb | 07 071 00 0.878 0479 00 0.963 0342 0940 0.0 0.910
Zlb2 0.71 071 00 0.878 047% 0.0 0.963 0342 0940 0.0 0910
Zlb3 071 07F 00 0.878 0479 0.0 0.963 0342 0.940 0.0 0910
Zle t 0.88 047 00 0779 0627 0.0 0.980 0.682 0.731 00 0.944
Zlc2 0838 047 00 0779 0627 0.0 0.980 0682 0731 00 0.944
Zlc3 091 042 00 0994 0.108 0.0 0.950 0.682 0731 0.0 0.928
Zid 1 095 030 0.0 0.854 0520 0.0 0.967 0777 0.629 00 0.927
Zld 2 09 029 00 0.854 0520 0.0 0.971 0.777 0.629 0.0 0.929
Zld 3 097 023 00 L.O 0.0 0.0 0.970 0988 -0.156 0.0 0.922
Zlel 081 059 0.0 0.690 0724 0.0 0.986 0.574 0.81% 0.0 0.948
Zle 2 080 060 00 0650 0724 0.0 0.986 0.574 0819 00 0.950
Zle3 082 057 00 0.690 0724 0.0 0.978 0574 0819 0.0 0.937

536



Table 4. Experimental and predicted fracture plane erientations {random stress stafes)

Sequences Experimental fracture Theoreilcal variance method Theoretical damage indicator
plane angle a,, (degrees) melhod
angle o, (degrees) angle o, (degrees)
GP9302 72.0 7.2 30.0( 60.0)
-73.5 -13.0 -30.0(-60.0}
-11.0
GP9305 -62.0 719 30.0 ( 60.0)
72.3 -30.0 (-60.0)
GP9307 -73.5 -73.6 30.0(60.0)
-67.0 -30.0 (-60.0)
GP9308 71.0 728 30.0 ( 60.0)
-714 -30.0 (-60.0)
GP9310 -25.0 -17.9 -30.0
179 30.0
GP9312 -72.5 -72.8 -60.0
714 60.0
GP9313 -71.0 754 -60.0
68.7 60.0
GP9314 -10.0 -713.5 -60.0
70.6 60.0
GP9315 68.0 70.0 65.0
-70.5 -74.2 -65.0
GP9619 -65.0 -69.7 -65.0
-42.0 4.5 ] 65.0
Discussion

In the case of cyclic stress states tests, the variance method gives very good
prediction of the fracture plane orientation. It provides the best predictions for the tests
carried on 0.35% C steel, 0.51% C hardened steel, 0.1% C soft steel, grey cast iron (3,32%
Cu). The damage indicator {deterministic) methed gives the most suitable predicted results
for the cast iron (3.87% C) and the (wo assessing methods are equivalent for the
duraluminium.

The overall mean value of the dot product is about 0.961 for the variance method
and 0.908 for the deterministic one. It indicates an average deviation angles of 16.1° and

24.7° respectively of the predicted fracture planes against the reat ones.

Possible explanations of the deviation between predicted and experimental fracture
planes may be caused by heterogeneous defaults of metals which become crack initiation

sites because of local stress concentrations and / or mechanical weakness of the material.
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Such defects are responsible of modification of the crack initiation plane direction because
of local changes of stress states. The second explanation is an average effect. In the case of
many equally critical planes each one quite close from each other, the macroscopic fracture
plane can be observed as the average fracture plane. The figure 5 shows for instance the
distribution of the damage indicator all over the possible material planes (which unit normal
vector is defined with angles ¢ and v) for a non proportional bending-torsion cyclic fatigue
test. All the critical planes make a ring and because of many activated slipping planes, the
real fracture plane has a unit normal vector close to the average of the set of unit vectors of
all the critical planes.

This phenomenon is presented on the figure 5 for the damage indicator method. Tt is also

available for the statistical variance method.

1
Eh 0.8+ B
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0.4 IR 180
: 135
0.2 90
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135 180 angle y

angle ¢
Fig. 5 Distribution of the damage indicator.

In the case of biaxial random stress histories, the mean angle deviation between predicted
and experimental fracture planes are closed to 3.3° for the variance method and 20.0° for
the damage indicator method if only the most critical plane is considered. Far this method
some other critical fracture planes may appear and are reported mentioned between brackets
in table 4. They correspond to other critical plane (figure 6), even if the cumulated damage
Dy, is less than the one obtained on the principal damaged planes. When these planes are
also considered the mean deviation between predictions and experiments is represented by a

7.4° angle.
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Fig.6 Plane by plane cumulated damage.

Conclusion

Two statistical and deterministic methods for predicting fracture plane orientation
have been described and compared against experimental resylts concerning cyclic and
random biaxial stress states. The statistical approach uses the variance of an equivalent
stress which is a linear combination of the normal and shear stresses acting on a plane. It is
assumed that the fracture plane is the one where the variance of the equivalent stress is the
highest. The deterministic method uses a critical plane criterion that defines a damage
indicator for any physical plane. It is a function of the alternate and mean components of the
normal and shear stresses acting on this plane. The fracture plane corresponds to the most
damaged one,

In the case of low mean stress the variance approach is a very promising method for the
fracture plane assessment.

As a matter of fact, this stage is a preliminary step for fatigue life assessment, The accuracy
of the fatigue life prediction methods strongly depends on the ability to determine the

critical plane of the material as the crack initiation js directly related to this plane.
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