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ABSTRACT : Previous work by the authors has  indicated that crack behaviour in various
fracture specimen geometries shows a secondary dependence on the degree of in-plane stress
biaxiality. Data published here shows the crack-length dependence of a parameter expressing the
degree of stress biaxiality inherent to a two of standard specimen geometries. Through the fracture
process zone which develops at the crack tip the influence of the material properties, the shape
and size of the single-edge-notched and compact tension specimens on the crack growth rate, shear
lips formation and crack front form on different slage of fatigue fracture process was estadlished.

Introduction

In the literature on the fracture mechanic the limitations of the single-parameter theory is disussed.
One connects the observed (racture characteristic dependencies on cracked body geometry and its
loading conditions with the influence of nonsingular term at small scale yielding. In the notation of
Rice (1), the second term in the expansion is denoted the T- stress and can be regarded as a siress
parallel to the crack flanks, The magnitude of the T-stress is defined LIﬁough o biaxially parameter
B, introdused by Leevers and Radon (2). Larson and Carlsson (3) have shown that the variations in
T which have, by manipulating biaxialily of loading, been shown to affect crack behaviour, are
encountered in comparing cracks at the same stress intensity factor K loading in different
“uniaxially” loaded specimen types. Then Leevers and Radon (2) have computed by the finite
element methed ( FEM) the stress biaxiality factor B which is inherent to the standard specimen
geomctries expressed over the nonsingular term T for elastic and clastic-plastic state conditions.
Under fatigue loading the cyclic crack growth rate should be uniquely determined by the K versus
time cycle. Some experiments on PMMA, however, have shown that another stress field parameter
- one expressing the effective “biaxiality” of the overall stress field - can also influence the crack

growth rate,
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The transition of tensile-to-shear mode crack growth under uniaxial cyclic lensile steess, leading to
the development of shear lips along the edges of the fraclure surface in material difterent properties
is a well-known phenomenon. The shear lips can be characterized by the widll, the height (Fig. 1)
and these dimensions are evidence of local mixed mode condition along the front of the fatigue
crack while the tensile mode 1 area in the middle of the specimen corresponds (o a plane strain
conditions. The slear lips development on the specimen surface becomes more intensive during the
second zone of fatigue crack growth when the fatigue  striation process in the central zone of the
fracture surfnce becomes dominant. Under conditions of stationary loading a  transition lo the
second zone of crack growth is related to a decrease in crack growlh acceleration which is because
of changes in damage accumulation process near the crack tip. The main hypotheses of modern
[racture theorics are associated with a concept of a critical distance considered as the lundamental
characteristic selting interrelalion between the processes occuring on both miicro - and macrolcvel
willt respect to material structure. This critical distance is oflen identified with the [racture process
zone  (FPZ) size where nucrodamages accumulates until crack growth lakes place at the
mncroscopic scale level. The size of FPZ, as it is established by Shiyaunikov (4), is parameter
sensilive lo change of the size of a specimen and it loading conditious. With the help of the FPZ-
concept il is possible also lo describe well known scale eflect at [racture.

In the present work a comparison of experimental data of crack growth rate with the theoretical
prediction is made and on Lhis basis the influence of the inherent siress biaxiality on the

chiaracteristics of crack growth in specimen two geometries is estimated,

Theoretical Procedures

Well known that the specimen thickness play a key role in characterizations of the crack-lip fields
an it is depend on distance to the tip and the [ree edge-surtace of the specimen. Wilh reduction of
thickness of lhe cracked body of a [racture condition vary from plane strain up to plane stress with
occurence of mixed modes at appearance ol shear lips ( Fig. 1). Allhough the stress intensity factor
K las been tabulated for a wide range of geometries, the biaxialily parameter B is only avialable for
a2 more limited number of cases. Larsson and Carlsson (3) have demonstrated that the B has a
significant effect on the shape and size of the plastic zone which develops at the crack lip. In front ol
a stable growing crack are realised the small-scale yielding conditions (SSYC). Therefore we shall
consider an opportunily of determination of plastic zone al SSYC with laking into account of

influence of inherent stress biaxiality.
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Shape and size of the plastic zone

For a strain-hardening material for wrich the uniaxial stress-strain relation may be written as
n
£ _ [.1) {n
E g, \o,

the distribution of strain in the plastic zone can be obtained using the Makhutoy model (5),i. e
gP = ngn
Where o, - yield stress; &, Ep- nominal and plaslic strain intensity respectively, X, -strain

concentration factor, n - strain hardening exponent. Here

P
Ko=(ea)"fo, (2)
and &, - elastic stress intensity at the crack tip. Substituting equation (2) into ( 1) we obtain
1+v), o, (3)
Ep =
P iE (C".f)
2n-050n-1Xt~ o)
where > Pg.D = S(n Y X ) ~ forplane slress
) e 210511~ BT v =) ,
P = ~ for plane sirain

n+l

To take advantage of a equafion (3) it is necessary to determine the singularity siress intensity

o, = 0'.:/0'0 . For the plane stress
(c_rf,")' = E:_’ +E:7 - .D_'HE», + 35’3, (4)
and for the plane strain
—o\? 1Ty _ _ — N\ . N1
(o:,o) = ;[(0', - o'”,)z +(a'», - 0'2) +{e.-7..) +6crfy] (5)
where 7, = V(EH + &'”) - From the analyses of Rice (1 ) follows that

K= et
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The magnitude of the nonsingular term 7.7/, is defined through a biaxiality parameter B,

introduced by Leevers and Radon (2)

- E-w )

where y{afw)- geometric factor of specimen for K. Replacing o, in equation (3) by o, and

(7}

substiluting equations (4-7) into it, one can calculate distributions of dimensionless elastic-plastic

strain intensities &, / (Eo‘u) . For this effiect we shall substitute equations (4-7) inlo {3) and obtain
equations for 7, /a which permits one to determine the shape and size of the plastic deformation

Z0ne:

the plane stress

20 P

P | a (3)
a 2 2 ' 2 3EP —P‘ID

P+ |P} -2P 28" - =

(a¥)* [ 2(1+V)
L
Po= A1+ i+ Sty +3S3) P = N2B(2 S~ 1)
the plane slrain
r;,D _ Pa 7 (9).
, 35 7 3D
-P P2-2Pa 2Bz(l—v+v)——2—,—_i i
b VP (ar)’ [ 2(1+ V)
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P, =2[(fn +1,) (t-vevi)-31. 1, +3f;];

P, = JEB[Z(fﬂ 1, J1-v+ v’)—3f»,]

and
_ g . @ . 30} _ 7] . 6 . 36)
fm(ﬂ) = cosE(I mSlna—sxn?),ij(B) = cosa(l + smzsm ?),

.8 8 30
f.‘_v (B) = SIDECOSE cos.z_

In Fig.2 the computational elastic-plastic boundary curves are shown at &, = ¢, /(E o‘o) =] for

different variants of stress-strain state. It is seen that the elastic-plastic boundary size depends
essentialy on the inherent stress biaxiatity factor B. The more complele estimation of influence B
can be obtained from comparison of the plastic zone sizes on the free surface and midde plane of
specimen respectiverly. Well know that the specimen thickness play a key role in characterisations
of the crack- tip ficlds and is dependent on distance to the tip and free edge-surface of the specimen,
Assumed that the countour of plastic zone local to the crack tip have shape as it is shown in Fig. 3 .

Where t is thickness of cracked body%and both r:D and r:D are the plastic zone sizes on the free
surface and middle plane. The coordinates of points (A end B) of transition from plane strain up o

plane stress are set by value 0,3 r:b /t which is in tum connecled to the width of shear lips on a
failured specimen surface. We shall consider change of the ratio r;"D / r,w with take info account B

depending on dimensionless crack length (rr/ w). In the present work we focus the analysis on

specimens of lwo geometries - single-edge-notched specimen (SENS) and compact tension
specimen (CTS). On the basis of numerical resuls by Lewers and Radon (2) the dependence B from

(a/ w) one can approximate by the following equations for a specimen of each geometry

21
B(—‘l) = 1.537(3) ~05 - SENS
W W

B(iJ = 0304 m(ij +0768 - CTS (10)
Y W
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The expressions for geometric factor of specimen Y(a/w) are well known in the literature on the
fracture mechanic

2 3 q
Y(ij =112 - 0.23(5) + 10.55(5) - 21.72(% + 30.39(3) - SENS
W w W W W

1 3 [}
[2 + (i’—ﬂ 0.886 + 4.64(5) _13.32(3) + 14.72(5) - 5.6[3)
W W W . W w
y(‘i) = L _cTs()
-

Displayed in Fig. 4(a) fo (b) are the variations of the ratio er / r: P taking into account of equations

{10,11) as a function of dimensionless crack length (afw). Note that r}® /a and r,” /a are given,

respectively, in equations (8) and (9). The effect of stress biaxiaality for a specimen each geometry

increases with inerease of applied nominal stresses & .
Local fracture stress

Let o, = O'f/ o, makes sence local fracture siress along of crack front. Its distribution on

thickness of a cracked body in general case it is not known. For the purpose of the present analysis

accepted the distribution on thickness of local fracture stress & ;s along of crack fronl in a

qualitative meaning repeats the behaviour of the plastic zone size as it is shown in Fig. 3. Then

a,i_D r’ID

_'r
— = Tap (12)
—3iD rJD

i P

From this equation follows that on the free surface of the specimen
b_'f = 5’}0 for z/h=1 ( plane stress )

and
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o, ='5}D for 0<z/h< A (plane strain) (13)

Where h - half-thickness of the specimen. The distribution of the & s on asite of crack front from

pointt A ( the coordinate of transition from the plane strain up to the plane stress ) up to free surface

of the specimen can be given by the following equation

2D 3D /2D 2D
¥ I-(r ¥ ) - r z
5,=57=% 2l (1_;)2_1’ +>-1b (1)

 _-— 7
h 4h

AR (22 fan)

where 5 ~ G} = a',,/ ao(l - w) - is the true ultimate lensile stress and - is reduction of

area. The order of determination of the ratio r:D / r” D s discussed above.

Fracture process zone size

Determination of the fracture process zone was made by application of the strain energy density

criterion by Sih (6). A critical distance r. ahead of the crack tip is assumed to take place when the
strain energy density in an element reaches certain critical value. A relative FPZ size & = r./a

was introduced by Shlyannikov (4)

d,= ——= (15)
2o -5,)
where
o : 1 anl :
W' = -—°] —o: +——0o"" (16)
¢ [0' [2 TS

Here .-S'-, = (i = 1,2,3) and § , are elastic and plastic strain energy density factors respectively

which are given by as
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51+ v)(x -1)r? S-'z :0-5(1+V)(]—K)BY2/J5
g _ntm sn+1

0.2
0.125(1 1)B*r? —
{1+ v)(x+1)B*Y S = H” gorly?

S,
S,

A=], k= (3— v)/(l+ v) -plane stress 1=1-*, x =3-4v - plane strain
It should be noted that distinctions between plane strain and plane siress are defining not only x

values but both HRR - field parameters 3‘(:!,0) and , correspending to each stress-sirain stale

type. The local fracture stress o , in equation (16) is given by equation (14).

Crack growth rate model

Making use of the cyclic stress and strain curve described by the parameters o-}, 6‘} and " which

have the same interpretation as the static stress-strain curve. A critical state of elastic-plastic

hysteresis loop can be wrilten in terms of the sirain energy density as

(%} =40}, (2N,)" (17)

Application of equation (17) leads to retation for fatigue damage in the fracture process zone

(18)

where N-number of cycles of loading, &, and AS - threshold values of nominal stress and strain
energy densily (actor. Here S ;= S", +5 T \/ES‘; +?S'—3. The parameter m in equation (18)

may be expressed in term of the cyclic strain hardening exponent 2 as nt = (l + n') / (5 + n') .

The FPZ- size in equation (18} is given by equation (15). The work by Shlyannikov (4) contain more
details about determination of the crack growth rale equation (18).
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Results and discussion

The theoretical approach elaborated in present work was used to describe and computational
estimations of the crack growth rate for two different type of specimens: single-edge-notched
specimen (SENS) and compact tension specimen {(CTS). Three different lypes of heat treatment are
administered to the 30 Cr steel resulting in the different microstructures referred to as stell A, B

and C. The main mechanical aud fracture properties of the 30Cr steel are given in Table 1.

Table 1. Mechanical and fracture properties of 30Cr-steel type A,B and C

Steel n triie —
T, | o O'”"e (dW] ch ¥ Tt &r
t e U I — i
¥p avJ, o
{(MPa) |(MPa) {(MPa) |(MPa) |(Mpa/)| (%)
A 1514 1750 2333 23.67 76.8 25 1.719 1.541 0.288
B 1039 1136 2064 26.34 159.6 45 6.42 1.987 | 0.599
C 444 8 761.2 1438 12.55 i01.4 65 4.3 3232 | 0.635

Experimental background of theoretical model

Displayed in Fig.5(a) to (c) are the variations of the crack growth rate as a {function of material
properties. Note that theoretical predictions are given by equations (7-16) and (18) which taking
into account inherent stress biaxiality. These experimental and theoretical results are presented for
the SENS geometry loaded by & =0.0165, 0.0181 and 0.0351 for 30Cr steel A, B and C

respectively. It can be seen that the agreement between experimental and theoretical data is good.
Analysis of scale effect

The influence of the sizes of a specimen is a well-known phenomenon in the experimental [racture
mechanics. The aquations (7-18) allow to estimate influence of stress biaxiality parameter B on
crack growth rate. Parameter B belongs to the characterislics stress-strain state therefore it the
influence is realized though a fracture process zone where takes place the accumulation of damage

ahead of the fatigue crack.
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Figs.6 and 7 shows the increase of the crack growth rate with increase of specimen width w. Three
sets of curves are given for each of the two specimen types SENS (Fig.6) and CTS (Fig.7). For the
30Cr steel A, B and C da/dN increased moderately exibiting lhe so called “scale effect™ at fatigue
fracture. The data on Figs.6 anf 7 corresponds to a computed resulls by equation {18). It is apparent
that crack growth rate would depend not only on specimen {ype bul also on specimen width and/or
crack size. It is possible to notice that then more sizes of a specimen that more distinction in crack

growth rate in specimens of the various geometries.
Shear lips on fatigue crack surfaces

Is mentioned earlier that formation shear lips results in occwrrence of mixed modes fraclure on &
specimen surface. For fatigue crack growth the shear lip width is approximately equiliy to
coordinate of the transition from plane strian up to plane slress. The equation (15) allows (o receive
the crack front form along thickness of a specimen through the appropriate FPZ sizes at various
stages cyclic (racture. Note that this equation takes into account also influence of inherent stress
biaxiality parameter B.

Presented in Fig.8(a) to (d) are plots of normalized FPZ size 5/(1 versus the normalized specimen

thickness z/h for the SENS made of 30 Cr steel C Equations (7,10) and (15) are used for evaluating

B and hence &. Three sets of curves are given for each combination of the specimen width and

thickness; they comrespond to aAv=0.3, 0.4 and 0.5. All specimen subjected by cyclic load =0.17.
As it follows from Fig.8 crack fronl from, and hence, shear lip sizes are dependent from the
specimen sizes at the same values of relative crack length. It can be seen that the greatest influence
of inherent stress biaxiality parameter B takes place on a free surface of a specimen.

Because of distinclions at FPZ sizes for B=0 and 50 it is necessary to expect various values of
c-rack growth rate accordingly for B=0 and B 0. Influence of inherent stress biaxiiilily on crack
growth rate will be more essential at increase level of applied nominal stress . Especially
sensitive to change of parameter B will be, as expecled, crack growth rate of physically short cracks

because in this case §= J/az ] and the influence of the nensingular term T dependent from B

becomes more significant.
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Plane strain Mixed modes Plane stress

Fig.1 Types of fracture
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Fig.2 Plastic zone for plane stress (1) and plane Fig.3 Schematic illustration of the

strain (2) n=13, v=03, =03, a/w=0.35 plastic zone ahead crack tip
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