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ABSTRACT: According to the critical plane approach, the expected fracture plane needs to be
determined in order to calculate the Jatigue life of a body under multiaxial random loading. As
experimeniaily observed by many authors, the position of such plane sirongly depends on the
directions of the principal stresses or strains. In the present paper, the expected principal stress
directions are oblained by averaging the instantaneous values of the three Euler angles through
some suitable weight funictions which can iake inte account the main Sactors influencing the fatigue

Jracture behaviour. A numerical simulation is presented to itlustrate the proposed procedure.
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coelficient depending on the slope m of the S-N curve
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reciprocal of the fatigue life
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N fe = Ny /()™ constant for the S-N curve

PDE joint probability density function
PSDF power spectral density function
R, (T) correlation matrix

Sij (f) two-sided PSDF

(ST TP SR § Y time instants

X (t) =[X 1 (£ X 6 (#)] six-dimensional vectorial process
x=[x1,...,%6] mean value vector

Aw,v,p Euler-Rodriguez parameters -
K, (T) covariance matrix
Gxx(t),ﬁyy(t),o'zz(t) normal stresses
ny(t),()'xz(t),c},z(t) - shear stresses.

Ty principal stresses (eigenvalues of the stress tensor)
Caf fatigue limit stress

¢, 0, ¥y Euler angles

W) weight function

Introduction

Numerous models of fatigue crack initiation and propagation under multiaxial
loadings do not consider changes of the principal stress and strain directions. Such models,
introduced by Irwin [1], Brown and Miller [2] and Socie [3], concern only some simple
cases of loadings. This is a reason why they may be applied for some particular cases under
cyclic loading, while they are not applicable to the case of multiaxial random loading, where
various damage mechanisms are mixed.

One group of multiaxial fatigue criteria is based on the critical plane approach [4].
In order to calculate the fatigue life, we must know the critical or expected fracture plane.
From the review of many test resuits obtained under multiaxial stress state, caused by
cyclic in- and out-of-phase loadings, it appears that the fatigue fracture plane position
strongly depends on the directions of the maximum principal stress or strain and the
maximum shear stress or strain [5,6]. However, changes of the principal axes positions are
often ignored, and directions of stresses or strains with the maximum amplitudes or ranges

are groundlessly assumed as directions of principal stresses or strains.
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Under multiaxial random loading, predominant damage mechanisms and factors
influencing the fatigue fracture plane position can be expressed through averaging, i.c.
evaluation of some statistical parameters. The expected or critical fatigue fracture plane
position can be determined through the weight function method, which consists in averaging
the instantaneous values of the parameters determining the position of the principal stress or
strain axes through some suitable weight functions [6,7]. The 3 x 3 matrix of direction
cosines can be obtained, and its elements arc used to determine the expected position of the
fatigue fracture plane. However, no averaging procedure gives, in a general case, an
orthogonal matrix because only 3 out of 9 direction cosines are independent. It is difficult
to say which 3 out of 9 parameters should be averaged {6,7,8]. In the present paper the
authors are going o avoid the controversial problem of selecting 3 independent parameters
by averaging the 3 Euler angles. A numerical simulation is presented as an example of the

proposed pocedure.

Random stress state

A multiaxial random stress state can be expressed by a six-dimensional vectorial process:

X =[X1(@),.... X (1)] '4))

where X;(¢),i=1,...,6, are unidimensional stochastic processes representing the
components of the stress tensor in the following order
Lo (t),G}y (£),0 ,; (1) normal stresses
O (1,0, (t),O'yZ (t) shear stresses.
As an example, Figure | shows a fragment of the single time history of the random stress
Ot =X 1(#) generated by means of a numerical simulation, as is illustrated at the
end of the present Section.

According to the correlation theory, the stationary and ergodic vectorial process
X(t) is usually described through its mean value, x = [£1,...,£6], and its correlation
matrix, R (T), or covariance matrix, P (), wih T =1 — Ly, forh k=12, .Nandh

<k, where N is the number of time instants being considered.
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Fig. 1 Time history of the random stress O ,, (t) generated by a numerical simulation.

By assuming the above process to be Gaussian, the joint probability density function (PDE)

is given by [9]

— 1 -1 T
fx,,...,xﬁ(xl----,xeﬁ)— (21t)6-iu (T)|exp[—0.5-cx-ux (t)-oyl @

where
rp'xl 1T v Hars(0)
Ly(t)= -
Hyst(T) - Hye6(D)
o, =[x; —Xy,..., %6 — %]
i, (t) = positive definite covariance matrix of random variables Xy,..., Xg
il-"x (x )| = determinant of the matrix L, (T}
u;1 (’Ej = inverse of covariance matrix [, ()
Ox = row vector of variables x|, ..., X¢ and mean values xﬂl ,...,)?:6
0-:1: = column vector (T, transposed).
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By carrying out spectral analysis [10,11], we are mainly concentrated on power distribution,
i.e. distribution of mean square values of amplitudes of particular harmonic components
appearing in the random process, and on frequency band widilh. Probabilistic relations
between random components of the vectorial process are also important. These properties

are expressed with power spectral density functions (PSDF) G{(f), which give a

rectangular 6 x 6 matrix for the random tensor

lfGn(f) — Ga()]
G(f)=[ @)
Ge1(f) ... Ges(f)

One-sided PSDFs G,j (f), i,j=1,...,6, of stress state components are determined for

frequency = 0 and they are equal to double values of two-sided PSDFs SU (f):

28;:(f) for 0< f <oo
G.-,-(f)={ ’ @)

0 for f <0
where
Gi; (f).35:;(f) = autospectral density function of stresses X; (1)
Gij (f),5;(f) = cross-spectral density function between stresses X;(f) and

X;(0).

The cross PSDFs are complex functions
Gyj(f)=Re| Gy (/)] +Im[Gy(f)] )

where
= coincident spectral density function, a real part of the complex function

Re[Gy (/)] G (f)

= quadrature spectral density function, an imaginary part of the complex

Im[G,_, (f )] function GU(f)

In the following, six ergodic and stationary randpm components of the stress tensor are
generated by means of a numerical simulation. The generic tensor element x; (1), with £
=1, ., 06 and £ ={(,,....5,...,f )y, is obtained by filtering a sequence of random
numbers ¥, (f) through the following one-dimensional recursive digital filter:

xi () =a; yi () +b; yi(tg_)) + x; () di x; (8 _p) (6)
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The above coefficients ai,b,-,c,-,d,- are determined in order to produce a sequence X i
with normal probability distribution (47(0,lL) (that is, expected value and variance are

cqual to zero and p, respectively) and with desired one-sided autospectral density function

G,-,- (element of the principal diagonal in matrix (3)) [12] given by:
4
= 0

Gji(w) =
* o
Wy 1+ e
i
where G; (f) =2 ®t G;;(®) and 0 = 2 n f, f= generic frequency. The parameter (D:;-

is connected with the maximum frequency value, fmax,:‘i- taken into account when

*
numerically generating ihe sequence X;(f). More precisely, we calculate ®; by

assuming

G," ((Dmax‘ﬁ) =005 G,-,' (0), ®

where Opmay ii =2 T fipax ii-

Principal stress directions through Euler angles

As is well known, the principal stresses, G,, n = 1, 2, 3, correspond to the
eigenvalues of the stress tensor, whereas the eigenvectors represent the principal direction
cosines &,,,my;,n,, n=1,2,3 (Fig.2). Assume to arrange the eigenvalues in the following
order: G| 2 05 2 O4; that is, the directions of maximum and minimum principal siresses

are called 1-axis and 3-axis, respectively. The matrix A of the principal direction cosines

[ h L L
A= m  np iy 9
noony m

consists of nine elements, but only three of them are independent because of six

orthogonality conditions.
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The orthogonal coordinate system P123 with origin at the generic point P, for which the
stress tensor is known, and axes coincident with the principal directions (Fig.2) can also be
described through the Euler angles ¢, 8, f which represent three counterclockwise
rotations around Z-axis, Y'-axis and 3-axis, sequentially. - Analogously to the case of the
direction cosines, we only need three parameters to define the principal stress directions.

If the above Euler angles are given, the principal direction cosines can be written as follows:

NZ

Fig. 2 Principal stress directions 123 described through the Euler angles ¢0, a9, y.

C¢ Cy C\I’ - S‘I’S‘V —C¢,Cg S,q, - S¢Cw Cq}SB _]
A = | spcecy HCpsy  —SpCaSy TCpCy  Splo
—5p C‘I’ AY:) Sq, cp

(10)

- where s and ¢ correspond to sin and cos, respectively, while the subscripts represent the

arguments of such trigonometric functions.
The procedure to obtain the Euler angles from the components of matrix A (see eqn {9)) is

quite simple, even if some calculation steps are needed. First of all, the following quantitics

must be computed [13]:

547



|
X =arc COSE(II +my +n3—1)

-1 1
my—ny n—h h—my (n
M=-""—, Uy =-—"—, By ="
2siny 2siny 2siny
Then the Euler - Rodriguez parameters can be deduced:
X . X
A=uy sin™ =Uy sin’-
) W= siny (2

V=g .s‘in% p=cos%
Note that the parameter % is not univocally identified from the first expression in eqgs (110),
since X+ 2mk and - + 2 1 k (with k = natural number) present the same value of the
function arc cos. Nevertheless, the representation (12} is not ambiguous, since only one set
of Euler - Rodriguez parameters can be obtained from all the different results determined
for .

Finally, the values of the Euler angles are derived from the following expressions:

= arc rg(v / p) ~ arc tg(A /)
arc tg(v /p) + arctg(A /) (13)

¢
V}
0

= arc sin(m3 / sin (p)

Averaging process

Since every component G; () of the stress tensor is a random function of time t,
we can determine the above Euler angles §(f), 9(f) and W (¢) at each time instant ¢, with
I =1y, 13505 Ig5..sty. By assuming that the expected position (¢,9,1|}) of the

principal axes is influenced by their generic position ( (), 0(z), Y (2) ) in the same way

for any value of ¢, independently of the stress values, the mean principal stress directions

1,2 and 3 can be obtained from simple arithmetic averages:
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A~ 1 ~ 14 A 14
¢=F§¢("‘)' e:;?e(rk). w=§§“¥(ﬂc) (14)

Since the expected fatigue fracture plane position may be assumed to depend on the mean

directions of the principal stress axes 1,2 and 3 {5,6,8], it seems logic from a physical
point of view to carry out the averaging of Euler angles by employing suitable weight
functions, W(#; ), to take into account the main factors influencing the fatigue fracture

behaviour:

~ 14 R
¢=ﬁ,"i¢(tk)w(tk) 0 =Wie(fk)w(tk)
t f
| i (15)

. 1 ! t
V=w i\l’(‘-’k W) W= i W)
f

[

If the above weight function is expressed as follows:

Wit )=1, foreach t; €[t,f,....tN], (16)

the sum, W, of the weights is equal to the number, ¥, of realizations of the stress tensor.
Consequently, the weighted mean values of the Euler angles obtained from eqs (15) for
W (#;) coincide with the arithmetic averages, given by egs (14).

Consider the following weight function:

0 if o-l(tk)<coaf
W2(tk)= O0<cxl1

g,
(0100 1 cag)] ™ if o1(8) 2oy

(17

It only includes into the averaging process, described by eqs (15), those positions of

principal axes for which the maximum principal stress G| is greater than or equal to the
product of the constant coefficient ¢, with 0 < ¢ £ I, and the fatigue [imit stress, G af »

deduced from the S-N curve plotted for toading ratio, R, equal to -1 {continuous thick line
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in Fig.3). The weight of such positions, which is defined in eqs (17), exponentially depends
1

on the coefficient 715 =——, where m is the slope of the S-N curve being considered.
m

[\
i ~
C*Gaf ;

0 : >
Ntk N¢ Ng, N

Fig. 3 The Wahler curve.

The above weight functions are plotted in Fig.4. In parlicular, Figure 4(b) shows the

constant weight W), whereas Figures 4(c) and 4(d) represent the function W,y forc=1

and ¢ < 1, respectively. Finally, the function ¢ *W;, with i = 1,2, to be averaged to

determine the expected Euler angle ¢ according (o eqs (15) is displayed in Fig.4(e).
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Fig. 4 Modifications of the time history of angle $(#) by means of weight functions Wi(t)

and Wz(t).

Numerical simulation

The components of a (riaxial random stress state (1) have been numerically

generated with six independent sequences of numbers, X{(tg)se-or Xg(Eg)s (=1, ons N =

131072). Bach of the digital time series has zero mean value f,- =0, (i=1,...,6), normal

6291.326

probability distribution with variances My 7021.198 MPaz. Hx22

MPa?, 1 33 = 5359.036 MPa”, Jiyq = 4465.860 MPa%, |55 = 4092515

MPa2, 1,66 = 3540.544 MPa® and low-band PSDF (7) with finax 1 = 80-00 2,
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Smax22 =90.00 Hz, fmax 33 = 65.00 Hz, Jmax44 =70.00 Hz, Jmaxss = 100.00 Hz,

JFinax 66 = 85.00 Hz. The constants of the digital filters (6), determined as discussed in the

second Section, are equal to:

ioa bj ci d;

1 0.01829 0.06841 1.74764 -0.76357
2 0.02146 0.08036 1.71847 -0.73825
3 0.01374 0.05135 179241 -0.80318
4 0.01523 0.05692 1.77736 -(.78975
5 0.02471 0.09254 1.68970 -0.71377
6 0.01986 0.07431 1.73297 -0.75080

The remaining related data are: sampling time At = 0.5 ms, sampling frequency 1/At =2
* — E] —_ * — * -
KHz, @11 = 269756 571, (039 = 303.475 571, 033 =219.176 571, @iy = 236,037 5~

(D;S = 286.616 s—l, COEG = 337.195 S_l. As an example, Figure 1 shows a part of the
time history of stress ¢ xx (1) generated on the basis of the above digital filter data.

Then, such digital time series x;{tr), (i=1,..,6) are treated as elements of a
symmetric matrix, whose eigenvalues and eigenvectors are calculated through the Jacobi
method, After arranging the eigenvalues and eigenvectors according to the relation
G1(tg) 202(t, ) 203(t; ), the components of the eigenvectors form the mairix of
direction cosines (9).

Euler angles calculation from the matrix A(#; ) consists of two stages. In the first
stage, the Euler angle ranges 0 < ¢(#; ),y (f, ) <21 and 0< 0(t; ) <m are reduced to
the new range -x/2 SO@).8 ), Wt )<m/2, which is related to
Lt ) my(ty ),nq () 2 0, by multiplying particular columns of the matrix A(ty) by +
1, in order to fulfill the condition Det At ) = 1. The angles (1 0,00t (zy) are

calculated according to equations (11) to {13).
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In the second stage, the signs of the previous results are changed to average the
values of the Euler angles in a correct way with respect to the physical meaning of such
angles. The ranges of the Euler angles are reduced as follows: 0 < (2, ), 0(¢, ) <1 /2
and ~R /2 Sy (t)<m/2.

Figure 5 shows a part of the time history of the angle $(#; )} (note that each dot
represents a single time instant), whereas Figure 6 contains the probability density
distributions of the Euler angles corresponding to the generated triaxial random stress state.
It can be seen that PDFs of the Euler angles are asymmetric and strongly differ from the
normal distribution.

After averaging the Euler angles according to relationships (14) to (17) we can

determine the mean directions (123) of the principal stress axes. In the case of the
numerically generated triaxial random stress state, the following mean values of the Euler
angles and the corresponding matrix of the mean direction cosines are obtained by assuming

the weight function Wj(#;)=1:

2.0
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0.5 j
!
0.0 N 1 ! 1 d 1 " [l
0.00 0.02 0.04 0.06 0.08 0.10
TIME, t (s)
Fig.5 Time history part for the angle ¢(1‘ ) obtained from the generated triaxial random state
of stress.
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Fig.6 Probability density function (PDF) of the Euler angles corresponding to the numerically
generated triaxial random stress state.

~

& =0.77687 rad 8 =101483 rad W =0.80389 rad

-024364 075747 0.60571
A =(-077022 022842 -0.59547
-058941 -061161 052776

Conclusion

Three independent parameters need to define the principal stress directions. Since
the selection of 3 out oi’ 9 direction cosines is a controversial problem, the three Euler
angles are chosen here to describe the principal stress directions.

Under multiaxial random loading, the stress tensor and its eigenvectors (i.e., the
principal direction cosines) change at each time instant. A procedure to univocatly calculate
the Buler angles from the matrix of the principal direction cosines for a given time instant is
proposed in the present paper.

Then the instantaneous values of the Euler angles can be averaged by employing

some suitable weight functions to take into account the main factors influencing the fatigue
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fracture process. Therefore the expected principal siress directions under multiaxial random
stress state are determined and, finally, the expected fatigue fracture plane can be obtained

from such principal directions.
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