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ABSTRACT: An analytical method for calculating notch tip sivesses and strains in elastic-plastic
bodies subjected to non-proportional loading sequences is discussed in the paper. The method is
based on axis invariant incremenial relationships between the elastic and elastic-plastic strain
energy densities al the notch tip, and material stress-strain behavior simulated according to the
Mroz-Garud cyclic plasticity model. Two formulations are described involving the strain energy
density and the complimentary strain density which appear to give the lower and the upper bound
estimaliions for the elastic-plasiic strains and stresses at the notch tip. Each formulation consists of a
set of incremental algebraic equations that can easily be solved for elastic-plasiic stress and strain
increments, knowing the incremenis of the hypothetical elastic notch tip stress history and the
malerial stress-strain curve, The validation of the proposed model against numerical data obtained
Jor non-proportional loading is also presented. The method is particularly suitable for fatigue life
analysis of notched bodies subjected to multiaxial cyclic loading paths.

Notation

Agss - normal strain range in the critical plane

AgP - plastic strain increments

8;; - Kronecker delta, §;= 1 fori=jand §;=0fori=j

Ag® - elastic strain increments

Ag® - elastic-plastic strain increments according to ESED method

Aeij - elastic-plastic strain increments according to Neuber's rule

Aeequ - equivalent plastic strain increment according to ESED method
Aeeq"N - equivalent plastic strain increment according to Neuber’s rule
Aoy’ - pseudo-elastic stress components

Ayt - actual elastic-plastic stress components according to ESED method
Aoy - actual elastic-plastic stress components according to Neuber's rule
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equivalent stress increment according to ESED method

equivalent stress increment according to Neuber's rule

symmetric tensor of elastic strain energy density increment
symmetric tensor of elastic-plastic strain energy density increment
tensor of elastic strain energy density increment

tensor of elastic-plastic strain energy density increment

tensor of elastic total strain energy densily increment

tensor of elastic-plastic total strain energy density increment
symmetric tensor of elastic total strain energy density increment
symmetric tensor of elastic-plastic total strain energy density increment
modulus of elasticity

actual elasti-plastic strains at the notch tip

equivalent plastic strain

equivalent plastic strain determined from the ESED method
elasto-plastic notch-tip strains obtained from the ESED method
notch tip strain components obtained from linear elastic analysis
elasto-plastic notch-tip strains obtained from the Neuber method
plastic components of the notch-tip strain tensor

nominal strain

equivalent strain energy density

plastic modulus

cyclic strength coefficient

Poisson's ratio

cyclic strain hardening exponent

axial load

torque

radius of a cylindrical specimen

equivalent nominal siress

equivalent nominal stress

deviatoric stress components

equivalent stress

actual stress tensor components in the notch tip

notch tip siress tensor compenents obtained from linear elastic analysis
notch tip stress tensor components obtained from the ESED model
notch tip stress tensor components obtained from the Neuber solution
nominal stress

nominal (average) stress in the net cross section due to axial load P
parameter of the material stress-strain curve (yield limit)

torque

wall thickness

nominal shear stress in the net cross section



Introduction

Fatigue analyses of machine and structure components require determination of elastic-
plastic siresses and sirains at crilical locations, such as notches, where the siress
concentration occurs. In most cases the stress state in the notch tip region is multiaxial.
However, if one of the stress components is the dominant one an uniaxial stress or plane
strain state is often assumed. Such an approximation might be satisfactory in many practical
applications but therc are cases where all the stress and strain components have to be
accounted for. This is particularly true when several loads are applied simultaneously and
the stress components at the notch root change non-proportionally. For example, axles and
shafts may experience combined out of phase torsion and bending loads.

The main focus of this paper is presentation and critical review of a method for calculating
multiaxiat elasto-plastic stresses and strains in notched bodies subjected to non-proportional

loading histories.

Loading Histories

Fatigue cracks most often initiate at the notch tip where the highest stress concentration
oceurs. Therefore, most fatigue analyses are focused on the determination of fatigue life of
the material volume which is under the effect of the notch tip stress-strain history. The notch
tip stresses and strains are subsequently dependent on the notch geometry, material
properties and the loading history applied to the notched body. If the various cyclic stress
components are in phase and change proportionally with each other (Fig.1), the loading is
called proportional. When the applied load causes the directions of the principal stresses
and the ratio of the principal stress magnitudes to change after each load increment, the
loading is termed non-proportional.

If plastic yielding takes place at the notch tip then almost always the stress path in the notch
tip region is non-proportional regardless whether the remote loading is proportional or not.
However, the remote proportional loading does not make the notch tip stress tensor to rotate
and therefore it makes the stress analysis easier in spite of the fact that some non-

proportionality of the notch tip stress history may occur.
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Fig. 1. An example of proportional cyclic torston-tension loading applied to a hollow cylinder

Fig. 2. An example of non-proportional cyclic torsion-tension loading applied to a hollow

cylinder
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The non-proportional loading/stress paths are usually defined by successive increments of
load/stress parameters and therefore all calculations have to be carried out incrementally,
particularly when plastic yielding takes place at the point of stress concentration. For this
reason (he entire analysis discussed below has been limited to incremental formulations

involving principles of theory elasticity and plasticity.

The Stress State at the Notch Tip

If the dimensions and external loads applied to a body are such that the plane stress state
dominates in the body, then the stress state at the notch tip is uni-axial (Fig. 3a) providing
that the surface at the notch tip is siress free. If the notched body is in the state of plane
strain (Fig. 3b), there are only two principal non-zero stress and two non-zero strain
components at the notch tip.

For the case of general multiaxial loading applied to a notched body, the state of stress
near the notch tip is tri-axial. At the notch tip, the stress state is biaxial because of the stress
free surface (Fig. ﬁc). Since equilibrium of the element at the notch tip must be maintained,
O = Gy, and €3 = &y,there are in general three non-zero stress components and four non-
zero strain components. Therefore, there are seven unknowns and a set of seven
independent equations is required for the determination of all stress and strain components
at the notch tip. The material constitutive relationships provide four equations, leaving

three additional relationships to be established.

Material Constitutive Model

The material constitutive model most frequently used in incremental plasticity is the
Prandtl-Reuss flow rule associated with the von Mises plastic yielding criterion. For an

isotropic body, the Prandtl-Reuss relationship can be expressed as:
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Fig. 3. Stress state at a notch tip (notation): (a) bady in plane siress, (b) bedy in plane

strain, (c) general bi-axial stress state.

The multiaxial incremental stress-strain relation (1) is obtained from the uniaxial stress-
strain curve by relating (he equivalent plastic strain increment to the equivalent stress

increment such that;

AeP d ()

R e A

Geg (2)

eq

The function f(G.,) is identical to that one obtained under uniaxial loading.
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The Load-Notch Tip Stress-Strain Relations

The load in the case of notched bodics is usually represented by the nominal or reference
stress being proportional to the remote applied load. In the case of notched bodies in plane
stress or plane strain state the relationship between the load and the elastoplastic notch tip
strains and stresses is most often approximated by the Neuber rule [1] or the Equivalent
Strain Energy Density (ESED) equation [2). It was later shown (3, 4] that both methods can
be extended for multiaxial proportional and non-propottional modes of loading. However,
the multiaxial Neuber and ESED [3, 4] models are not the only methods for determination
of multiaxial elastoplastic strain and stress states at the notch tip. Similar methods were also
proposed by Hoffman and Seeger [ 5] and Barkey et al. [6 1. All of the approximate
methods consists, in general, of two parts nately the constitutive equations and the
relationships linking the fictitious linear elastic stress-strain state (o€ at the notch tip

with the elastic-plastic stress-strain response as shown in Fig. 4.

8 e
Fig. 4. The linear elastic and elasto-plastic strain and stress states in geomefrically identical

bodies
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The incremental Neuber rule (3) and the ESED equation (4) can be found in reference {4].
- incremental Neuber's rule
ojAch+esacy=ofac + el ®

incremental ESED equation

ofAes=of Aej. 4

The overall encrgy equivalence in the form of eq.(3) or (4) relating the pseudo-elastic and
the actual elastic plastic notch tip strains and stresses has been accepted in general but the
additional conditions necessary for the complete formulation of the problem are being the
subject of controversy. Hoffman and Seeger [5] assumed that the ratto of the aciual
principal steains at the notch tip is to be equal to the ratio of fictitious ela’slic principal strain
components while Barkey et al. [6] suggested to use the ratio of principal stresses. The data
presented by Moftakhar [7] indicates that the accuracy of the stress or strain ratio based
notch tip stress-strain analysis depends on the constraint at the notch tip. Unfortunately, it is
very difficult to define objective criteria enabling appropriate choice of those additional
conditions. On the other hand, the accuracy of the additional energy equations presented by
Singh et.al. [4] seems to be less dependent on the geometry and constraint conditions at the
notch tip and therefore the analyst is not forced to make any arbitrary decisions while using
them. However, they have a theoretical drawback indicated by Chu [8] because they do not
have tensor properties and thus the estimated elastic-plastic notch tip strains and stresses
depend on the system of coordinates. The dependence is not very strong and with suitably
chosen system of reference it could be sufficiently accurate for engineering applications.
Nevertheless, it is possible to formulate an axis invariant system of equations similar to

those discussed in references {4, 8].

Axis Invariant Multiaxial Equivalent Strain Energy Density Equations

The strain energy density tensor, AW,", resulting from the pseudo-elastic siress and strain

increments at the notch tip (Fig. 4) can determined as:
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AWE = oy - Aeg; (5)

The strain energy density tensor, AWUE, for the elastic-plastic body resulting from the
elastic-plastic stress and strain increments at the notch tip (Fig. 4a) can also be determined

as the inner product of the current stress tensor and the strain increment tensor.

Awi}3 = o}, - Ae; (6}

In the case of the notch tip stress free surface (Fig. 3c) tensors (5) and (6) can be presented

in the matrix form with all the elements in the first column and the first row being equal to

zero.
0 0 0
AW =10 65,85, + 05,485, 05 A€5; +05;A65 N
i
' 0 05483, +0%AeS, 05 Ae%; +03;Ae,
and
' 0 0 0
E E 4B E AoE E ,.E E 4 E
AW =[0 o0pAEy, +0pAEy, OplAty +0pAey, (8)

0 ohaek +o5ael, ohAek +ohAel

The sum of diagonal terms in both tensors represents the increment of strain energy density.
Both tensors (7) and {(8) are generally non-symmetric. However, they can be easily
converted into symmetric tensors, AS; and AS;J-E. by setting the off-diagonal terms equal to
the mean of the off-diagonal terms in tensors AW;;" and AWU-E respectively without changing

any of the diagonal terms.

0 0 0
-3 < ] e (=] e
(022 +03 )Aeza +0n (A€22 + A533)
(052 + 533)‘5‘5;3 +03; (AEgz + Ae_‘-i:,) e e . & ae
0 5 GaphEy; + 033483,
and
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0 0 0
(0252 + G%)Aa% +op, (ﬂeg2 + Ae_f‘_,)

ASE =(0 o5 Aek, + onAeh, > (10)
E E \A.E E {a.E E
(022 +033)Asﬂ +05; (Aen +Aa33) BB EAE
2 Oyl +OyALy,

Analogously to the hypothesis proposed in references [2, 3, 4] it is assumed that the strain
energy increments at the notch tip in the geometrically identical elastic and the elastic-
plastic bodies (Fig. 4) are equal. Such a hypolhesis can be expressed by the equality of
tensors (9) and (10).

AS§ = AS (1)

The hypothesis written in the form of equation (11) results in three independent equations
relaling the pseudo-elastic strain and stress components and the actual elastic-plastic

response at the notch tip in the elastic-plastic body (Fig. 4).
0883, + 05,485 = ORAes, +0yAes, (12)
05,45, + 05 AeS, = ohAel, + ohAel, (13)
(032 +65, )Ae& +05, (Ae§2 + Asgﬁ) = (052 +o5, )Aegﬁ_1 +03 (Aefz + Ae_%) (14)

Equations (12-14) can be supplemented with four stress-strain relationships derived from

the general constitutive equation (1).

v 1/ g . grAek
aef = - (Ack+Ack)-—(ok+ o) (15)
E 2 of
; 1 ! 1 Agff
Ach = —(Ach - VAGE) + —(2c}, - ol — (16)
E 2 Ceq
1 1 , AglE
Aek = —(Ack - VAck) + —(Q2ok - o) (18)
E 2 Ceq
1 +v 3Aely
Aeh = ——Ach+ —— "ok (19)
E 2 Geq .
2 2 2 = \2
where: (qu) =(02Ez) +(0'§3) —0520§3+3(G§3)
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] E
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Ae = ( cq)Alrcsf
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Equations (12-19) form a complete set of equations enabling all the elastic-plastic strains,
(Ae 5 A", Ae”E. AEHE ), and slress incrementls (625, 63:F, 623 ) to be calculated based
on h: pseudo-elastic stress history at the notch tip. A graphical representalion of the
incremental ESED method is shown in Fig. 5a, where the sirain energy densitics are

represented by the verlical bars of the lrapezoidal shape whose areas, according to eqns.

(12-14), must be equal.
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0 & € 0 & Iele e
(@) (b)

Fig. 5. Graphical representation of : a) Incremental ESED method, b) Incremental Neubers’s

rule
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Axis Invariant Total Strain Energy Density Equations

A set of axis invariant equations similar to equations (12-14) can also be written in terms of
the total strain energy density, i.e. the sum of the strain energy density and the
complementary strain energy density. The tensor representation of the increments of the

total strain energy density at the notch tip of linear elastic body (Fig. 4) can be writter as:

Analogously, the tensor representation of the total strain energy densily increments it the

notch tip of geometrically identical elastic-plastic body (Fig. 4) can be written as well.
AQY = o} - Aey + Al £ (1)

Both tensors (20) and (22) are generally non-symmetric but they can be converted nto
symmetric tensors, Ty;® and TijN, by setting the off-diagonal terms equal to the mean of he
off-diagonal terms in tensors AQ® and AijN respectively without changing any of tle
diagonal terms. Similarly to the strain energy density tensors the sums of the diagonal term;
of tensors T;® and TijN represent the increment of the total strain energy density, ie. the
strain energy density plus the complementary strain energy density.

It is postulated, similarly to the original Neuber's concept, that in the case of localized

plastic yielding in the notch tip region the symmeiric tensors are equal.
ATS = AT} (22)

It can be shown that in the case of uni-axial stress state equation {22) reduces to the well
known Neuber’s rule [1,2] and to the model proposed by Moftakhar et.al. [3] for multiaxial
proportional loading. For the problem with one surface free of stress, as it often occurs in
notches (Fig. 3), the tensor equation (22) results in three independent equations relating the

pseudo-elastic and the elastic-plastic strain and stress increments at the notch tip.

€ 3 [ € [ e € _ N N N_.N N N N_ N
03,485, + AcH ], + 05,485, + AG el = G Ay, + AGyEy + 048y + AonEy (23)
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GAEY, +ACHES; +05;ART; + AGTES; = GaNJAS?'s + AU;‘:«!E?a + G%AE% + 5\02139?3 (24)

(05 + 0% Jaes, + (Ao, + AcSs Je5s + 05 (Ae5, + Ae; )+ Acsy (g5, +e3s )=

(25)
N N YN N NYN , Nf, N N N{N N
(022 t 03 )5823 + (A022 t A033)'923 TOn (A£22 + ASas)* AC3; ("322 ¥ E]J)

Equations (23-25) and four constitutive equations (26-29) form a set of seven equations

necessary for complete formulation of the notch tip stress-strain problem.

v | Al
Al = - (Ach+Acl) - (ol +ol)—L (26)
E 2 o
1 1 Agt
Aedy = —(Ach; - vAcH) + —Q2oh, - o) — @7
E 2 eq
i 1 Al
ASY, = —(Acl, - vAgl) + ~(2cl - o)t (28)
E 2 Ceq
1 +v 3 AglN
Aehy = g Ao+ T—Foh (29)

&q

where: ((S‘];ll‘;l)2 = (GgNz)z + (0?3)2 - 0'5‘2 0'?3 + 3(05{3)2

N _ NYA N N N A
(022 —On )(Aczz —As3; )"‘ 30340

N
AGy, = e

In the case of uni-axial or plane strain state at the notch tip the set of seven equations
reduces to only 1wo equations as proposed originally by Neuber [1]. The equivalence of the
increments of the total strain energy density is graphically shown in Fig. 5b, where the
energies are represented by the horizontal and vertical rectangles whose areas are assumed

to be equal.
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Comparison of Calculated Elastic-Plastic Notch Tip Strains and

Stresses with Finite Element Data

The accuracy of the proposed incremental Neuber rule and the incremental ESED method
were assessed by comparing Lhe calculated nolch tip stress-strain histories to those obtained
from the finite element method of stress analysis. The elastic-plastic results from the finite
element analysis of reference [4] were obtained using the ABAQUS finite element package.
The geometry of the notched element was that of the circumferentially notched bar shown in
Fig. 6.

A%

Fig. 6. Geametry and dimensions of the nofched bar tested under non-proportional tension

and forsion leading; p/t = 0.3, Rt =7

The nominal torsional stresses, T,, and tensile stresses, ©,p, were determined based on the
het cross section according 1o eq. (30).

T
Cop = _F and T, = o (30)

(R —1)’

The basic proportions of the cylindrical component were p/t = 0.3 and R/t = 7 resulting in
the torsional and tensile stress concentration factor Ky = 3.31 and Kp = 1.94 respectively.

The ratio of the notch tip hoop to axial stress under tensile loading was Ga3° /02" = 0.284.
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The material for the notched bar was SAE 1045 steel with a cyclic stress-strain curve
approximated by the Ramberg-Osgood relation:

!
9 G o
E=—+| — 31
E (K ) e
The material properties were: E = 202 GPa, v = 0.3, §, = 202 MPa, n’ = 0.208, and
K’ = 1258 MPa.

The loads applied to the bar were torsion and tension according to the path shown in Fig.7.

% hotch tip yield
point

GnP

Fig. 7. The non-proportional torsion-tension load path
The maximum applied load levels were chosen to be 50% higher than it would be required

to cause yielding at the notch tip if each load were applied separately. Specifically, the

maxima were Gnp = 103 Mpa, and 1, = 90 MPa. The final ratio of the nominal siresses
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was Onp/T, = 1.133. The normalized nominal equivalent net cross sectional stress ratio
defined as
Seq _ Yok +312 2)
Sy Sy
reached the value of 0.92 at the end of the loading path, a value that indicates almost
general yielding of the net cross section.
The local pseudo-elastic stress histories at the notch tip induced by the load path shown in
Fig. 7 were used as the input to calculate the elastic-plastic notch tip stres-strain response.
They were inputted into eqns. {12-19) in the case of the ESED methed and into egns. {23-
29) in the case of the total strain energy (Neuber) approach. The calculated strains and
stresses were subsequently compared with the elastic-plastic finite element results. The
strain components, €5; and €3, and the stress components, G,; and Gy;, that were calculated
using the methods described above are shown in Figs. 8 and 9. Note, that the results from
both models and the finite element analysis are identical in the elastic range. This is
expected since the models converge to the elastic solufion in the case of entirely elastic
behavior.
Just beyond the onset of yielding at the notch tip, the strain results that were predicted using
the proposed models and the finite element data begin gradually to diverge.
However, both methods give reasonably good estimation of the notch tip stress-strain
behavior. It can be concluded that the incremental total strain energy density or the Neuber
method predicts an upper bound, and the incremental ESED method, a lower bound
approximation of the actual notch tip strains. The investigations up to date revealed that the
actual notch tip strains are always within the band defined by the two methods and the
average values of the two limits may be used as a good approximation of the actual stress-
strain state at the notch tip.
In order to predict the notch tip stress-strain response of a notched component subjected to
multiaxial cyclic loading, the incremental equations discussed above have to be linked with

the cyclic plasticity mode! as described in reference [9].
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Conclusions

Two methods for calculating elastic-plastic notch tip strains and stresses induced by
multiaxial loading paths have been proposed. The methods have been formulated using both
the total strain energy density and the strain energy density relationships. It has been found
that the generalized Neuber's rule, which represents the equality of the total strain energy
density at the notch tip, gives an upper bound estimate for the elasto-plastic notch tip
strains. The generalized equations of the equivalent strain energy density (ESED) yield a
lower bound solutton for the notch tip strains and stresses. The method has been verified by
comparison with finite element data obtained for non-proportional loading path and non-
linear stress-strain material model.

The calculated notch tip strains and stresses can be subsequently used for estimating fatigue

damage and life prediction for multiaxial cyclic loading histories.
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