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ABSTRACT For the prediction of fatigue life and modeling of reliability and damage accumulation
behavior of SM45C steel under variable multiaxial loading, a stochastic model which employing
Markov chaitt model and damage vecior at critical orientation was developed, In the case of SM45C
steel maximum tensile stress plane was found 1o be the critical plane and positive tensile stress
amplitude was laken to be the equivalent sivess in the multiaxial loading. Under the assumption that
the same stochastic model can be applied to the multiaxial loading cases with same equivalent stress
level, 20 uniaxial fatigue tests were conducted at each three siress levels 828, 803, and 731 MPa and
Jatigue tests of variable multiaxial loading cases which are composed of multiaxial loading blocks
whose equivalent stresses are 828, 803, and 703MPa were conducted. Markov chain model and
damage vector at specific orientations of interest was applied for the simulation of life and damage
accumulation belhavior. And the crack initiation orientation was also predicted by this model.

Notation
O axial stress amplitude
Ta shear stress amplitude
G, axial stress mean
T shear sfress mean
phase shift of tension and torsion
O, normal stress amplitude on a plane
T equivalent stress
N; cycles to failure
Wy duty cycles to failure
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o) variance of life

L mean value of life

DC duty cycle

P bxb Transition Matrix

b number of damage states

p; probability of remaining in state i in a DC

di probability of going to state i+1 from state i in a DC

Po initial damage vector of material

] components of initial damage vector

Px damage vector of material after x DC was applied

(D probability of being in state i after x DC was applied

pd damage vector at the plane of orientation 8 after x DC was applied

pi() probability of being in state i at the plane of orientation 8 after x DC was
applied

Introduction

Generally engineering components such as automobile transmission, suspension, nuclear
plant, pressure vessels are subjected to variable multiaxial loading, which may be non-
proportional and of variable ainplitude. And there is a strong need for developing reliable
methods to predict fatigue life under multiaxial loading to achieve desired reliability of the
system. A number of investigations were conducted for fatigue life prediction and reliability
assessment under constant multiaxial loading by means of equivalent stress and strain,
critical plane method, energy method and so on. Lee(1-2) proposed a modified ellipse
quadrant type out-of-phase multiaxial fatigue life criterion and good agreement with
experimental results. You and Lee(3) reviewed multiaxial fatigue assessments of metal.
However in the case of variable multiaxial loading it is very difficult to make general and
reliable method of fatigue life prediction, damage accumulation and reliability assessment
due to its extreme complexity. Only a few methods have been proposed in the literature and
up to now. Furthermore there is even no agreement on whether to look for damage in the
volume or on a critical ptane.

Bannantine and Socie(4-6) proposed a variable multiaxial fatigue life prediction
method employing local strain and strain history and damage occurring on the critical plane
which experiences maximum damage during multiaxial loading. Wang ard Brown(7;8)

proposed a life prediction method employing critical plane concept and a new multiaxial
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cycle counting method. Stefanov(10-11) proposed curvilinear method for random multiaxial
fatigue. Lagoda and Macha (12) calculated damage on the most dangerous plane decided by
the method of maximum variance of the stress on the plane. Most of the works are focused
at the most important question "How to quantify damage cycle by cycle with changing
principal axes?" In reliability assessment, one major problem of fatigue life prediction is the
randomness of fatigue life data. Fatigue life is not deterministic variable but a random
variable and in fact one can only state about the probability of failure not the life of material
or components. There are generally two methods of dealing with this problem, First one can
employ a statistical method assuming the distribution of fatigue life. Normal, lognormal and
Weibull distributions are most frequently employed distribution types of fatigue life. But
one should know the statistical properties of the population and it needs a number of
experiments and the application is restricted to the same condition. Second one can employ
a stochastic modeling and it requires relatively less data and one can simulate many
situations including life prediction and reliability assessment. -

In this paper a stochastic modeling of variable multiaxial fatigue was developed based
on a critical plane concept and uniaxial fatigue data. Two kinds of variable multiaxial
fatigue tests were conducted using round specimens of SMA45C structural steel and

compared with the results of the stochastic fatigue damage accumulation model.

Stochastic Model of Variable Multiaxial Fatigue

Since Weibull(13) introduced a cumulative distribution function{CDF) of exfreme value
type into failure studies, extensive use has been made of CDF in life and failure studies
because the constiucting CDE by stochastic modeling is simple and useful. Bogdanoff(14-
17) regarded fatigue phenomenon as a Markov process and employed Markov chain model
and damage vector for the stochastic modeling of fatigue. Tanaka et al(18) applied this
model to uniaxial block loading cases. A Mafkov process is a stochastic process that

satisfies the following equation (1).

Prob (S,,,, = 5, = 1.5, =k;--.5, = z1=Probs,,, = Js,, = i) (1)

595




Spes, the probability of being in state j at n+1 is only affected by the value of S, and the
history of state value has no effect and the fatigue damage accumulation can be regarded as
a Markov process and Markov chain model is employed for the stochastic modeling of the

fatigue damage accumulation as in Fig. 1.

Py

B3 5td

Fig.1 Markov chain model for fatigue damage accumulation

DC :a representative period of operation in the life of a component in which damage can be
accumulate. For example, 100cycles can be define as one duty cycle
i :damage state number
b : total number of damage states including b-1 transient states and one absorbing state,
final failure state
pi : probability of remaining in state i in a DC if damage was state i at the start of the DC
q; : probability of going to state i+1 in a DC if damage was state i at the start of the DC

Transition matrix P is defined as equation (2).

ppq 0 0
0 Py 49y 0
p=|+ =+ P3 93 . @

Ppa 9p1
o ¢ 0o - - 0 1

where p; and g; must satisfy equation (3) and the initial damage vector p, can be defined as

equation (4).
pi> 0, pi+gi= 1 ) (3)
Po={ T, T3,.-., T}, T; = probability of beihg in state i at DC=0
4)
b
Xm; =1
i=1
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Generally m; has the value | and the other components are all zero for virgin materials. The
probability of being in damage state i after x DCs have been applied is given by damage

vector py as shown in equation (5).

Pe={ (1}, pe(2), .., (D)}, (i) = probability of being in state i after x DCs

b
Yps (i)=1 5

i=1

The damage vector p, is calculated by equation (6).

Px=Pxa P=p, P* (6)

If the transition matrix P is different from duty cycle to duty cycle, then the damage vector

is calculated by equation (7)

X

P. =P IIZ 0

1

In order to estimate the value of b, pi, and q; we can use expected value and variance of

duty cycles to failure W, with the condition that m=1

E[Wf]=b—1+lfz_1;’—j

Lo (8)

Variw ;1= E‘lz—;(l."%)

In this model damage vector has no concern about orientation or the plane on which
damage is accumulated because it is developed for uniaxial fatigue life. However in the case
of variable multiaxial loading whose critical plane keeps changing during the loading and
consideration of orientation of damage should be considered. In order to consider the
orientation of damage accumulation we define damage vector at the plane of orientation 8
after x DC was applied as equation(4) with the assumption that the same stochastic model of

uniaxial fatigue data can be applied to the multiaxial loading cases with same equivalent stress level.

Then p§ can be calculated for every orientation of interest similarly to p, as following,

PE={p% (W).P% @),....0% (b)) ©)
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where, pi ()= probability of damage state of orientation  being in i after x DCs

p% can be calculated from equation (10}, and the orientation that gives the largest P2 (b)

is the most plausible failure plane, and x that gives pi“*"“ {b) the value 0.5 is the expected

value of W, , where 8 is the orientation of most plausible failure plane.

po =peIlP (10)

I

where p% , the initial damage vector at orientation 8 can be defincd similarly to p,

Experiment and Results

Uniaxial experiments

Uniaxial fatigue experiments were conducted using hour glass type specimens made of
SMA45C structural steel. The specimens’ radii of curvature are 40.5 mm and the specimens
were polished to number 2000 paper. Fig. 2. shows specimen geomelry and coordinate
system of the specimen,.

Uniaxial fatigue tests were conducted to get S-N curve of uniaxial fatigue data for
seven stress levels. Fig. 3. shows uniaxial S-N curve of stress amplitude versus mean life
time. The stochastic modeling of variable multiaxial loading was developed under the
assumption that the same stochastic model can be applied to the multiaxial loading cases
with same equivalent stress level, so equivalent parameter should be decided considering
cracking behavior of the material and it was found that maximum tensile plane is critical
plane and positive tensile stress amplitude on that plane was taken to be equivalent stress.
From the uniaxial S-N curve 8§28MPa, 803MPa, and 731 MPa were chosen to be test stress

levels.
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Fig. 3 Uniaxial S-N curve of SM45C steel
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At each level of equivalent stresses uniaxiat fatigue tests were repeated 20 times to

conslruct the fransition matrix P at each level. The transition matrix of each equivalent
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stress level denotes as P,, Py, and P, . The statistical properties of fatigue life of three

equivalent stress levels are given in Table 1 for DC=50cycles. According to the statistical

property results of Table L, P,, Pj, and P, were constructed to be the same size as shown in

Table 2.

Table 1. Eslimates of statistical properties of uniaxial fatigue lile

stress level

duty cycle mean, L duty cycle variance, o®  standard error

A (828 MPa)
B (803 MPa)
C (731 MPa)

464.28 5671.99 20.89
738.81 11587.30 29.86
2178.80 135674 47.10

Table 2. Transition matrices

stress level b pi qi
P, 45 0.96057 0.03943 i=12,..5
0.88443 0.11557 i=6,..,44
Py 45 0.94044 0.05956 i=12,..,44
P, 45 0.99183 0.00817 i=12,..5
0.97511 0.02489 i=6,...44

Variable multiaxial fatigue tests

Multiaxial fatigue tests were performed under two kinds of variable multiaxial leading cases

composed of three multiaxial load blocks, namely loading case A and loading case B. Fig. 4

shows loading case A and case B, and stress state of each block and critical plane

orientation O are given at Fig. 5 and Table 3,
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Block 1 Block 2 Block3 |- -
Q Block 3 Block2{..._..
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an L
0":
Time Time
(a) (b)
Fig. 4 Load combination of loading case (a) case A (b) case B
Table 3. Stress state of the blocks
Block O. c T ¢ o
1 803 401.5 141.6 70.8 0° 10°
2 828 414 0 o° 0°
803 401.5 -70.8 180° -10°

When blocks are repeatedly applied to the material, critical plane i.c. maximom

tensile plane keeps changing and different amount of damage is accumulated on each

critical plane by the blocks. For example, when block 1 is applied 6,,=0, of 0 = 10° plane

is 828MPa, 6 = 0° plane is 803MPa, and 6 = 10° plane is 731MPa. Now we define the

transition matrix applied to a plane for 1 repetition of loading cases as follows. The results

are shown in Table 4.
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Fig. 5 Stress states of blocks

P : Transition matrix of the plane of orientation 9 under loading case o

Table 4. Transition matrlces of the plane of interest

Loading case

10° o° -10°
I P P,

PY=p, PP, PP, pY =p, PP, PP, P =P.P.PPP,

P =p,P,P. PP, P =P, P, P, PP, P =P.P.P,P,P,

Damage accumulation of each plane is calculated as equation (11) for 1 repetition of

loading case. As 1 DC is 50 cycles, 1 repetition of loading case is equal to 5 DC.

X
Doy = p?,(P.f) (1)

CDFs (Cumulative density function) of the plane of interest under loading case A and case

B are plotted in Figs. 6 and 7. Under loading case A 10° plane is most dangerous and under

-loading case B all three planes are almost equally dangerous.
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Fig. 7 CDFs of loading case B

The experimental results of variable multiaxial loading cases are give in Table 5. CDF from

the model is plotted with experimental CDF in Figs. 8 and 9.
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Table 5 Experimental results of variable multiaxial loading cases

CDE loading case A loading case B

1 0.03571 57 99

2 0.10714 82 100
3 0.17857 86 108
4 0.25 89 114
5 0.32143 90 119
6 0.39286 _ 100 124
7 0.46429 110 125
8 0.53571 112 126
9 0.60714 113 _ 134
10 0.67857 114 137
11 0.75 121 142
12 0.82143 123 154
13 0.89286 152 155
14 0.96489 182 193

1.0
| [—e— Experimenial Resull
08r —— CDF from the model
of degree 10
w 0.6}
o
Q
0.4
021
0.0 i 1 1 " ] 1 1 " 1 n )
0 50 100 150 200 250 300

Number of repeated [oading case A
9

Fig. 8 CDF of loading case A
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Fig. 9 CDF of loading case B

The CDFs calculated from the stochastic model showed relatively good accordance with
experimental results as seen in previous figures and have a tendency 1o overestimate the life
because it used positive tensile stress amplitude as the equivalent stress and shear stress was
neglected, so it is expected that the model accuracy will increase if more proper equivalent
parameter is selected. The expected number of repeated loading cases calculated from the
model that gives 50% failure probability is 116 for loading case A and 145 for loading case
B. Experimental results of number of repeated loading cases A and B of 50% failure
probability are 111(4.3 % error) and 125.5 (12.6 % error). It is advantage of this model that
one can conduct fatigue life prediction and reliability assessment simultaneously. Cracking
oricntation can also be predicted by selecting a plane that gives most small number of

repeated loading cases of 50 % failure probability.

Conclusions

(1) A stochastic medel which employs Markov chain model was developed for life
prediction and reliability assessment under variable multiaxial fatigue loading.
(2} The assumption that the same stochastic model can be applied to the multiaxial

loading cases with same equivalent stress level was found to be acceptable.
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(3) The transition matrices applied to construct multiaxial stochastic model are obtained
from the transition matrices of uniaxial fatigue tests.

{4) 'The CDFs calculated from the stochastic model showed relatively good accordance
with experimental results and it can be also used for reliability assessment and

cracking orientation prediction.
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