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ABSTRACT : A breadth of multiaxial fatigue research has been conducted under proportional in-
phase loading. However, very litlle experimental work has been undertaken into order to establish
the effects of out-of-phase loading on fatigue properties of materials and components. This paper
presents a calculation methodology suitable for multiaxial our-of-phase stress loading. It is mainly
based on the determination of local stress with finite elements computations and on the use of a
multiaxial fatigue model. Predictions are compared with experimental results carried out a cross-
shape test specimen. The correlation is excellent.

Notation

pX (3] Stress tensor

Gij Component i,j of stress tensor

Oiimean Mean value of ojj

Sijalt Maximum half-amplitude of gjj, Gjj,) >0

ajj Phase difference between the stresses gj;

(0] Frequency of loading

AN, BN Positive constants defined for fatigue fife N
Teqy Equivalent shear stress amplitude

Pmean Mean hydrostatic stress

p(t) Hydrostatic stress

Cx Load trajectory curve

S(t) Deviatoric tensor

Csg Load trajectory curve in the hyperplane of the deviatoric tensor
D Longgest segment intercepting CS

Pe Perimeter of the ellipse

N Fatigue life

FI(®) Loading in direction 1

F2(1) Loading in direction 2

o) Phase difference between F(t) and Fa(t}
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Introduction

Several multiaxial formulae have been proposed, such as those of Sines (1),
Crossland (2), Dang Van (3) or Papadopoulos (4).

For periodical in phase loading, the predictions obtained using these equations
comply with the experimental tendencies observed.

Phase difference between the stresses considerably reduces fatigue strength. Thus
predictions are inclined to be over-optimistic and non conservative.

It is possible to formulate this loading as follows :

Sij = Sijmean T Sijalt - sin(wt—aij) (1)

The purpose of this paper is to present a multiaxial model suitable for in-phase and
out-of-phase loading. It is derived from Sines formula : results are identical in the case of
in-phase loading.

Sines formula

The initial formula proposed by Sines is expressed as a linear combination of the

equivalent shear siress amplitude and the mean hydrostatic stress reached during the cycle:

Teqa + BN.Pmean < AN (2)

Failure occurs when (Teq,+BN.Pmax) equals AN.

Definition of Pyiean
Hydrostatic stress p(t) equals a third of the trace of the stress tensor S(t).

Pmean = % [ max p(t) + min p{t} ] (3)
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Definition of Teq,

For any periodic load, the point representing the siress tensor S(t) describes a closed

curve (Cg) which represents a load trajectory.

For radial (or proportional) loads, the load trajectory is a line segment passing
through the origin. The principal axes of the stress tensor 5(t) are fixed during the cycle.
In the most general case of periodical foads, the principal siress axes vary over time, as the
load is not proportional. Teq, is proportional to a distance in the hyperplane of the
deviatoric tensor.

The projection of the load trajectory (Cg) onto the hyperplane of the deviatoric

tensor is a closed curve (Cg) -

‘ Smn

S

ij

S(12)
Cs

Syl

Figure 1. Load trajectory (Cg).

Teqq is then expressed as: Teq, = 2 \ﬁ (4

D is the length of the longgest segment intercepting (Cg). It is calculated as follows:

D =max(t[,tp) MCe([S(tl)-S(tZ)].[S(tl)—S(tZ)]) (5)
1 00
where:  S(D) = S(O)-p(t).1d 1Id =|: 010
001
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Modification of the Sines formula

New Definition of Teq,,

Considering an out-of-phase multiaxial stress load.
In the stress space, point M representing stress tensor S(t) is revealed as a closed curve
which is an ellipse (figure 2). The projection of this ellipse in the deviatcric plane also

results in an ellipse of long segment D/2 and short segment d/2.

ot + 3.71/2
wmt d
D

wt*

wt -+

wt + /2

Figure 2. Projection of the load trajectory in the deviatoric plane

D et d are calculated with the following forms: D= max(t) r(wt)

d = min(t) r(wt)

with r(wt) =4/ trace ( [S(O-S(t+p)].[S()-S(t4p)] ) (6)

The deviatoric tensor is defined by the following relation : S(t) = S(t) - p.Id

The maximum or the minimum of r(wt) is obtained expressing the relation ;

S lomm) =0 %

Long segment D/2 is equal to the maximum of the two terms r(wt*)/2 and r(wt*+p)/2, short

segment d/2 corresponds to the minimum.
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In Sines original formula, only D is used in the calculation of the equivalent shear
stress amplitude.
In order to take into account the totality of the phase difference (characterized by D

and d), it is judicious to replace D by the half-perimeter of the ellipse : pa/2.

_ 1 pef2 '

Teq, is therefore formulated : | Teq, =75 2 (8)
.- P _pDid L5 Lou 16 Dd

where ; 2 =5 g [I+4 l+64 l+256 19] andl:D+d ¢))]

In the case of in-phase loading, pe/2 is equal to D.

New Formulation of the multiaxial model

The two parameters of the model can be defined by means of two simple uniaxial
tests. The tests selected here are a fully-reversed tension-compression test and a repeated
tension (i.e. zcro Lo tension) test.

For the fully reversed tension-compression test :

Teq, =15 d =0 10

eqa = ‘\ﬁ an Pmean = o
. s-1(N)

The Sines formula becomes : ‘\ﬁ = AN (an

Where s-1(N) is the stress amplitude corresponding to failure at N cycles.

For th 0 to tension test : Teqa= sl and ——'—SO( ) (12)
. £ ZCT! . = =
T q 2\6 Pmean 6
sp(N) sp(N)
The Sines fi lab = +BN—— =A 13
e Sines formula becomes N N g N (13)
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Where sg(N) is the maximum stress (i.e. twice the amplitude) corresponding to failure at N

cycles. From equations (11) and (13) the parameters AN and By are obtained ;

2.5-1(N)
AN= NG and Bn= \I_(SU(N) (1)

For economic reasons {weight and volume gain), calculations in civil aeronautics are
generally made between fow and high cycle fatigue, i.e. for lives on failure of between 104

and 107 cycles inclusive.

If, for this range of life, we plol experimental results, concerning an aluminium alloy,
on a graph (log(smax).log(N)), we can observe that these points fall approximately on a
straight line (figure 3). From here on, it is possible to model fatigue cycle curves by means

of straight lines.

The use of a specific point (corresponding to N=103 cycles) and the line gradient (-

1/p) result in the following expressions:

- 105 1/
1) =51 (105 (7 ) (15)
105 1/
soM) = so(10%). (g~ ) (16)
Relations (15) and (16} are defined for a 50% probability of failure.
Introducing the above values of s-1(N) and sg(N) into Sines formula, we obtain:
(105) s1(10%) 105 17p
Teqat +\3 (= ( - 1) Pmean= \3 qD 17
Solving for N equation (17) the fatigue life is obtained :
s-1(10°)
3 p
N =105 [ \3 ] (18)

2.5-1(10%)
Teqa +4/3 (W- 1) Pmean
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Maximal Stress {MPa)
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Figure 3. Fatigue results, 2024 T351

For the aluminium 2024 T351, the multiaxial fatigue mode! becomes:

1/5
-1 (N) = 235.(-—'3,5 ) (19
105 1/5
soN) = 340.(55 ) (20)
N = 105, [—132 I§ @)
- ) Teqa + 0,66 Pmean
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General approach

The approach presented is valid for in-phase and out-of-phase loading. Using
discretised geometry, an elastoplastic computation gives the stress state at several instants
during the load cycle. It is consequently possible to define, on one hand the mean
hydrostatic stress, and on other hand the equivalent shear stress amplitude. Expression 18 is

used to deduce fatigue life associated with each node of the finite element model.

Experimental validation

To validate this approach, we use a cross-shaped test specimen. It is subjected to a
biaxial tension by means of a two actuators system fastened to a support.
The loading is defined as follow :  F1(t) = Fimoy+F lalt-Sin{wt)
Fa(t) = Famoy+F2alt-sin(wt-f)
with f = 0°, 30°, 45°, 60°, 90°, 120°, 150°, 180°
and Fimoy+Flalt = F2moy+F2al= 60000 daN

Analysis of test results highlights two crack initiation areas (see figure 6). For f<45°, crack
initiation occurs in the fillet; for £>45°, in the skin close to the centre of the test specimen.

We apply the approach described figure 4 : a finite element model gives the stress tensor at
each node, and at several increments of load cycle. The theoretical crack initiation areas are

in accordance with test results.
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Discretization of
the geometry

Node i -————

Elastoplastic Calculation at several
increments of load cycle :
tl,..,ti,..tn

Calculation of
- Teqa
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Fatigue Life Calculation
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Figure 4. General Approach
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Figure 5, Test Specimen

Figure 6. Crack initiation areas
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Table 1. Test results

f Fatigue Life Crack Initiation
area
o° 209900 1
0° 195870 1
0° 204240 1
30° 137015 1
3o 144163 1
45° 67067 2
45° 84305 2
60° 68074 2
60° 61811 2
a90° 14760 2
90° 11715 2
120° 4465 2
120° 5768 2
150° 3630 2
150° 3745 2
180° - 3147 2
180° 3524 2

Figure 7. Finite element modelling
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Stress tensor components (MPa)

wt

Figu 8. Stress tensor at several increments (f=90°)

Table 2. Stress tensor components

f 0° 30° 45° 60° 90° 120° 150° 180°
Sllmean 103,5 103,5 103,5 128 128 128 115 115
$22mean 16 16 16 0 0 0 0 0
$33mean  103,5 103,5 103,5 128 128 128 115 115
512mean 22 22 22 0 0 0 0 0
S13mean -22 -22 <22 ¢ 0 o 0 0
$23mean 48,5 48,5 48,5 20,5 20,5 20,5 20,5 20,5
S| [alt 84,5 93 102,6 169 217 2576 260,7 264,5
$22alt 13 12,5 11,9 0 0 0 0 0
$33alt 84,5 93 102,6 169 217 2576 260,7 264.5
$[2alt 18 249 309 0 0 0 0 0
5[3alt -18 24,9 32 0 0 0 V] 0
$23alt 39,5 38.1 36,3 17 16,5 13 11,8 0

a2 0 15 25 0 0 0 0 0

a33 0 45 65 90 130 140 165 180
a2 0 325 325 0 0 0 0 0

a1 0 235 280 0 0 (] 0 0

a3 0 30 20 20 70 8O 90 0
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Figure 9. Comparison hetween test results and predictions
Conclusion

The calculation approach presented in this paper is efficient in estimating the fatigue
life with in-phase and out-of-phase multiaxial stress condition.

It gives an excellent correlation with the tests. In addition, the predictions are conservative.
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