P. Pilvin*

The Contribution of Micromechanica]
Approaches to the Modelling of Inelastic
Behaviour of Polycrystals

pol
G. Gailletand and T. C. Lindley) 1995, Mechanical Engineering Publications, London, pp. 3-19.

ABSTRACT The purpase of this paper is to make an evalualion of mathematical constitulive
equalions devoted Lo the mechanical description of some specific ctfects observed in metallic
polycrystals submitted to mulliaxial and/or cyclic loading paths (ratchetting, overstrengthening),
Two approaches are analysed: (i) the first one js the issue of ayt inductive method essentially
based on a phenomenclogical analysis of experimental resuls; (ii) the second is the oulcome of
a more deductive process with models able (o use/provide information on the microstructure.
It will be shown that all of these specific effects can be easily described with a polycrystalline
approach based on z simple representation of the microstructure of the material: orienlation
distribution function and slip systems. The model used is applied to the simulation of yield
surfaces, ratchetting phenomena and overstrengthening effect for FCC alloys.

1 Introduction

tals. Two approaches may be distinguished. In the first one, the representative
volume element is considered as a ‘black box’, Consequently, the development
of this kind of constitutive equation is mainly based on g phenomenoiogical
analysis of experimental results. In these models, all the variables ysed are
defined on a macroscopic scale and the thermodynamical concept of internal
state variables js frequently invoked. The main disadvantage of this approach

is the lack of predictive character, the use of the mode| being lmited to the

deductive process is considered in order to (ake into account any kind of
microstructurai information on the material. Pertinent scales have to be
introduced to mode| clementary mechanisms of the Inelastic deformation, In
these models, the introduction of a ‘quasiphysical’ description naturally leads
to increasing the modelling capabilities, On the other hand, the constitutive
equations obtained with the second approach have a large number of
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variables (typically between 200 and 10000). At the present time, this disadvan-
tage limits the use of these models in structural mechanics codes but the increase
of computational power and the developments of parallel architectures would
allow a broader use.

In Section 2, a short review of the classical models coming from the inductive
approach is given. Only unified viscoplastic formulations (one variable to
describe the inelastic strain) are considered here. The validity domain of these
models under cyclic multiaxial loading is then appreciated. Section 3 is devoted
to a brief presentation of the polycrystalline models, and its possible contribution
to the development of the inductive approach is evaluated. Finally, these two
approaches will be compared with a set of experimental data including specific
effects observed in metallic polycrystals submitted to multiaxial and/or cyclic
loading paths (ratchetting phenomena, overstrengthening effect).

2 The Inductive Approaches

As the development of these constitutive equations is mainly based on a
phenomenological analysis, the fundamental experimental results associated Lo
these models-are briefly recalled. In these models, ‘internal variables’ are
introduced to describe the present state and predict the evolution. If there are
some attempts to justify, from a metallurgical point of view, the choice and the
nature of these internal variables, it should be observed that all these variables
are only defined at a macroscopic scale. Consequently, they act as a volume
averaged representation of the microstructural mechanisms.

2.4 Modelling of elastic domain

The description of the metallic materials behaviour in the inelastic range requires,
at first, to specily the evolution of the elasticity domain with respect to the
hardening state of the material. As shown later, this step is fundamental as long
as it strongly influences the plastic flow rules and the evolution laws of the
internal variables. With an inductive approach, this modelling is based on
experimental facts. Many experiments are cartied out to determine the initial
shape and the evolution of the elastic domain (1, 2). At the present time, the
experimental devices are limited to characterizing plane cross-sections ol the
domain through biaxial tests. The usual technique consists in carrying out tests
on thin-walled circular tubes with tension/compression-togsion or ten-
sion/compression—internal pressure loading. The analysis of such results shows
that the elastic domain modifications due to hardening are significant and rather
difficult to describe. Nevertheless, it is possible to split these modifications into
three components: ’

(1) a translation;
(2) an expansion or a contraction of the domain size;
(3) a distorfion with respect 10 the initial shape of elastic domain.
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For the sake of simplicity, the classical constitutive equations assume that the
modelling of the current elastic domain could be defined with two transform-
ations only: a similarity and a transtation. The similarity allows the description
of the expansion (or contraction) of the initial domain and is associated with
isotropic hardening cffects (R). The translation is associated with kinematic
hardening effects (X), and relates to local strain incompatibilities. The distortion
of the current elastic domain is therefore not taken into account in classical
models. In the framework of initially isotropic materials, the boundary of the
current elastic domain can be described by the lollowing expression, for pressure
independent plasticity

FEE R X})=%Z-X)—R—Ry+ G(R, X) = 0 ()

where X, stands for the macroscopic stress tensor, and X is a stress homogeneous
function of the two invariants of the deviator of (X — X). In most of the models,
the function G(R, X) is equal to zero. Nevertheless its incorporation is needed
to integrate nonlinear hardening rules in the [ramework of * generalized standard
materials’ (3). It should be observed that the choice of a particular shape to
describe the evolution of the elastic domain is probably the most important
step in the model elaboration. In fact, the choice of an «a priori explicit form for
the function Z, frequently deduced from the initial shape of the elastic domain,
is very restrictive because the shape of the current yield surface remains
unchanged during the whole history. Recent propositions have thus introduced
an implicit form for the description of the shape of the elastic domain, therchy
allowing more flexibility for its evolution ().

2.2 Evolution laws for internal variables

In the inductive approach, the choice of the number of internal variables, of
their type and their evolution law is based on experimental results. Of course,
this is consistent with the methodology, but [requently the tests are performed
under one-dimensional loading, so that the question of the extrapolation of
these equations - which essentially contain one-dimensional information - to
three-dimensional situations can be addressed. The model developed at ONERA
(5) is one of the most popular unified constitutive equations. Its hierarchical
structure based on the superposition of several variables to describe the
kinematic and isotropic hardening effects leads to a fairly good representation
of experimental results under proportional loading paths. The equations of this
model (summarized below) have enough ingredients (5) to meet with other
unified theories (6, 7, 8) and can therefore be used as a reference model. In the
presenl paper, it was decided to present the structure of these constitutive
equations in the framework of the thermodynamics of irreversible process (9).
The quadratic terms G(R;, X)) introduced in the yield function F allow to find
the nonlinear kinematic hardening rule proposed by Armstrong and Frederick
for (X;=0,C 3> 0and D, > 0) and the isotropic hardening rule proposed by
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Voce for (R, =0, b; > 0 and @, > 0). The function Q,(R, X) accounts for time
recovery effects for each hardening variable. The evolution laws obtained here,
equation (2d), are then a generalized standard version of the ONERA model
(10). The original constitutive equations (5} can be found by using, in equation
(2d), the viscoplastic ‘multiplier’ Q) (F-G) instead of Q,(F). These equations can
also be used for time-independent plasticity with ©, = 0, using the ‘characteristic
function’ of F for ,. Below are summarized the unified constitutive equations:

State laws (internal variables: E?, g;, o).

E:Zyl+~v—1®1 E (2a)
1 —2v
R, =bQ,q with R=Sum(R) (2b)
iel
2 .
X, = 3 Cia; with X= Suljn X, {2¢)
Je
Evolution laws.
o 0 e L _
Ty 4= oR, 70X,

K M 0 F LR
Uz, R, X) = 04(F) + (R, X 0P = o [ M0 }]

F(E, R, X) = J,(E — X9 — R— Ry + G(R, X)) with J / 3

G(R;, X)) = 5 Sum 5 [Max(0, | Ri| — R;)]?
iefl

+= Sum ! [Max(0, J (X)) — X)]? {2d)
2 jed Ci !

The numerical simulations show that, for one-dimensional toading, two corre-
lated phenomena are still not correctly represented with this kind of model: the
mean stress relaxation and the progressive strain accumulation when the cyclic
loading has a non-zero mean value. This inadequacy is well known and recent
proposals (introduction of a threshold X; in the dynamic recovery term and
significant increase of the number of kinematic hardening variables) clearly
improve the predictions of the original model (11, 12).

The important development of biaxial testing has led to a large number of
modifications in order to improve agreement with experimental results, and to
get expanded multiaxial applicability. The overstrengthening effect under
non-proportional loading path is an example of such a phenomenon, observed
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Fig 1 Stress-sirain curves for a tension/torsion test on 316L stainless steel at R.T. under
non-proportional loading path defined by E,, = £y sinfar} and 2E,, = ) /3¢, sin{ar — ¢} with.
(. = 0.5, ¢ = 33%). Symbols (O): experimental data from (15); dashed lines: classical modelting,

for several alloys in the early 1980s (13, 14, 15), for which recent modifications
were made in the model (14, 15). Most of these improvements introduced a
measure of the loading non-proportionality and a modification of the isotropic
hardening rules. Several proposals are reported in previous papers, but, even if
these modifications allow to reach the observed extra-hardening effect, they also
produce a shape of the hysteresis loops which does not agree with experiments,
As illustrated in Fig. 1, this anomaly is present for 316L stainless steel loaded
al room temperature in tension/compression—torsion (X, = & sin{owi} and
2, = /’.\/5.90 sin{wt — ¢}) with a small phase lag (A = 0.5, ¢ = 33°)(18). With
the model used (15), the hysteresis leop is in good agreement with experimental
data for the axial component, but the loop corresponding to the shear
components is too open. This defect results from yield surface distortion which
is not represented in the model,

3 The Deductive Approaches

This part is devoted to the presentation of some models built in the framework
of the deductive approach, using a simplified description of the microstructure.
As a first step, the general methodology applied to metallic polycrystals is shown.
The model chosen for the numerical simulation of the experimental database
is then written in a more detailed way.

3.1 The classical polycrystalline models

The heterogencity of the material element on a micro-scale is introduced in the
model, together with the representation of the elementary deformation mech-
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anisms. A good knowledge of the microstructure is then needed, and the main
difficulty arising with this type of approach is the choice of the pertinent scale
and of the critical mechanisms. In the specific case of metallic materials, a crude
description is currently used: even after large advances in physics of solids, the
atomic level remains unreachable if the final goal of the description is to perform
macroscopic simulations in a reasonable CPU time. It follows that the
dislocations cannot be directly represented. The effectiveness of the models is
nevertheless related to the description of the various heterogeneity levels. For
most of the models, one level is considered: the grain. They are developed to
be applied in finite transformations, under monotonic loading, their purpose
being generally to determine the shape of the yield surface or to predict texture
evolution. The uniformity of the mechanical fields (stress and strain) is assumed
in cach phase. It is noted here that a “phase’ is only defined from a geometrical
point of view through the crystallographic orientation, and not by the
morphology or the relative position of one grain with respect to the other (no
size effect, no neighbourhood effect).

For a ‘grain’, the modelling of the material deformation is generally restricted
to the effect of crystallographic slip. The behaviour is defined by the generalized
Schmid law, which assumes that a slip system is active when its shear stress
reaches a critical value, The description of the hardening is then introduced at
this level, provided the value of this critical shear stress on each slip system
depends on hardening variables. ‘Latent hardening’ is present if the value
computed for a given system is related to the values of the other systems. The
plastic strain rate &” of a grain is classically obtained from the knowledge of all
the shear strain rates 4, on each slip system:

£? = Sum (m,}) with m, =% [n, @1+ |, & n,] (3)

58

In the previous expression, m_ characterizes the orientation of the slip system
defined by the unit vector n,, normal to the slip plane, and the unit vector [,
giving the slip direction.

The calculation of the resolved shear stress for the slip system can also be
expressed as a function of the local stress in the grain o, by means of the same
tensor, as 1, = ¢:m,. The definition of the mechanical behaviour on the
elementary level is completed by the evolution rules for transgranular variables,
and especially y,. A number of theories can be found in the literature. The
simplest ones use crystallographic slip as hardening variable (16). More complex
solutions introduce variables associated with dislocation density (17, 18). An
alternative solution consists in introduecing at this level a kinematic hardening
variable. The purpose of this choice is to take account of the local heterogeneities
inside of the grain, which are not modelled in expression (3), as y, stands for
the mean value ol plastic slip in the grain. This method, adapted [rom the
inductive approach (19), seems to be questionable, but it represents a pragmatic
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solution to describe with a low number of variables the transgranular hetero-
geneity, even if that can also be made by following other approaches (20).

The final aspect of the polycrystalline model is the definition of the relations
between the variables in each grain of the aggregate (o, €, £°) and the global
macroscopic variables (E, E, E?). The self-consistent approach is a good tool
torepresent the grain-to-grain interaction (21). The one-site approaches compute
the stress in phase, which individual behaviour is known, as the result of the
calculation on an ellipsoidal inclusion in an homogeneous equivalent continuum.
They permit greater precision in the assumptions (sometimes implicit assump-
tions) made in other interaction models. In the simple case of a global and local
isotropic continuum, the global inelastic strain js the average of the local inelastic
strains, so that the following relation can be a priori expressed

¢ = L + au(E? — &7). 4

This equation represents a model with uniform stress (¢ = 0} (22), Lin-Taylor’s
model (@ = 2) (23), or Kroner’s model, with an elastic accommodation az1)
(24). From a practical point of view, this expression is often used with lower
‘a’ values (constant values Iying between 0.01 and 0.2 (25, 19, 18), the elastic
accommodation overestimating the intergranular stresses (26). The evaluation
of the correct form of the elastoplastic accommodation has been made by Hill
(27) for time-independent plasticity, but the numerical treatment of the resulting
implicit integral equation is not simple. A simplification, valid for proportional
loading, has been proposed (28): in expression (4), the shear modulus is replaced
by the secant elastoplastic modulus (with a = 1). This modification may have
a strong influence, especially for the case of small perturbations.

3.2 The polycrystalline model used

The model which has been used for the material identification is a new release
of the initial version due to Caitletaud (29). The formulation of the model on
the local level is made in the framework of viscoplasticity, in order to improve
the efficiency of the numerical treatment. This classical choice allows to directly
compute the shear strain rate from the actual value of the resolved shear stress
and of the internal variables. Nevertheless, with suitable values of the viscosity
coefficients (k and n), the global behaviour becomes time-insensitive. The main
specificity of the model is the introduction of transgranular variables able to
model the cyclic behaviour. The set of equations of the polycrystalline model
is presented below. The localization relation, equation (5a), is given a priori
under an explicit form. It involves a supplementary variable for each phase, Be,
allowing the intergranular stresses to be relaxed. The value of the coefficient,
a, may remain of the order of unity, so that the model reduces to Kroner's
modei on the onset of viscoplastic flow. The fading memory term in equation
(5h) produces an accommodation of the intergranular incompatibilities, the rule
of which is similar with Zaoui-Berveiller's (28), for monotonic loading. Two
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hardening variables are introduced for each mechanism. The latent hardening,
which is correlated with overstrengthening associated to nonproportional
loading, is modelled by an isotropic variable r,, and an interaction matrix f,,.
The kinematic hardening variable x_ accounts for the local heterogeneities inside
the grain; a possibility of time recovery is introduced for this variable, equation

(51).

Localization rule

¢ =L + au[B — §?]; B = Sum (f,§°) {(5a)

gel

Constitutive equations for each phase

T, =6:mg X, = ¢ 'y = Q, Sum (h,,9,) + Q,p, {5b)
res
id ,.
F = —_x]=r —r . =— = xZ
5 |T5 \51 '0 Fs + Gs! Gs 2 ¢ Xy (SC)
F F, - "
5 = [Max{o; ik—(;—}] Sign(t, — x,) (5d)
gy = 1701 — byq; ps = 191 — b)) (Se)
. "
b =3, do 3~ {2 signce) (50
&7 = Sum (m,3,) (38)
seS
g — &P g 4 2 o P
B = & — D(Pr — &7} 3 /") (shy
Homogenization
1 v
p_ R Ee=—{I[— i
E 5‘;221 (&) E o {I T \ll®l}2 (51)

3.3 The capabilities of the polycrystaliine approaches

The purpose of this section is to illustrate the capabilities of the polycrystalline
approaches on FCC polycrystals, for which the predominant deformation
mechanism is the crystallographic slip on the octahedral systems {111} (110},
For each new material, the computations are performed by using the orientation
distribution function, taken under a discrete form. If this information is missing,
an isotropic distribution is chosen. It is made from 40 equivalent crientations
(YgeG; f, = 1/40) (30).
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Fig 2 Simulation of the distortion of the yield surface with the polycrystalline model under
tension-compression loading (the initial yield surface Is plotfed with broken fines).

As a key point of this model type, it can be checked that the equations
naturally predict a good description of the evolution of the elastic domain (19,
30}, specially the distortion of the yield surface. This fact is illustrated in Fig. 2
under a tension-compression loading. The property is confirmed in Fig, 1, where
the micromechanical model gives a good description of the hysteresis loop for
the shear components, due to the rapid rotation of the normal characterizing
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Fig 3 Simulations of small strain cycles in a large one with both models.
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Fig 4 Simulations of one-dimensional ratchetting test with both models: 5 cyeles (+330/—270
MPa), 5 cycles { + 360/ — 240 MPa}, 5 eycles (+330/—270 MPa) and 5 cycles (+ 300/ — 300 MPa).

the plastic flow: this movement is made possible by the fact that a corner
develops on the vicinity of the actual loading point.

The effect of latent hardening naturally produces a good description of the
overstrengthening cffect, as previously shown on 3I6L stainless steel (29), for
Waspaloy and an aluminium alloy (31).
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Fig 5 Simulations of two-dimensional ratchetting test with both models: 5 cycles (Z,, = 50 MPa
and E, = +0.4%), 5 cycles (E,, =50 MPa, E,, = ::0.7%) and 5 cycles (E,, =0 MPa,

E,; = £0.7%)].
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Last, but not least, the multicriteria character of this approach produces good
qualitative predictions of the ratchetting phenomenon. For instance, F ig. 3
shows that a small cycle remains ‘suspended’ in a large one, which is an essential
feature to predict ratchetting under one-dimensional loading (32). Figures 4 and
5 illustrate the good qualitative agreement of the approach for one-dimensional
and two-dimensional ratchetting tests, compared with classical models. Note
that Figs. [, 3, 4 and 5 have been performed for the classical model (dashed
lines), with the coefficients given in Table 1 (E = 180 GPa, v = 0.33), and, for
the polycrystalline mode! (solid lines), with the coefficients given in Table 2
(with @ = 1), using =1 for the interaction matrix, except the coefficient
corresponding to the Lomer—Cotrell interactions, denoted by h;., whose value
is 1.46. The simulation of the biaxial ratchetting test has also be performed with
a macroscopic kinematic rule, equation (6), specially designed to reduce the
ratchetting effect (33).

Table I  Coefficients of the classical model used for the simulations (units: MPa s)

Material R, 0, b C, b, X, C, b, X, K i
A 3l6L 188 ¢ 32 45900 402 Y 5820 — — 103 10
Waspaloy 448 183 21 115000 339 0 i — — N 25
IN73BLC 106 —53 109 40500 82 0 445000 134 0 313 296
IN738 LC 51 —49 292 46300 230  86.5 318000 — — 616 5.26

Table 2 Coefficients of the polycrystalline model used for the simulations (units: MPa s}

Marerial ro ¢, b, 0, b, D & ¢ d K n
A 3lI6L 319 33 10 —193 5 61 0176 1110 0 40 8
Waspaloy 238 47.7 81 —175 2 28 0203 1020 0 50 25
IN738 LC 302 -288 534 o — 6o — 38100 342 382 924
[ D;X;:N] .
a;=Q\N[1 - | with Nsuchaskf=Q N 6
=N - TN 1 (6)

As is shown in Fig. 5 (dotted line), the biaxial ratchetting is greatly reduced
with this rule but the negative ratchetting after removing the axial stress is too
important.

4 Comparisons with Experimental Data
4.1  Methodology

A significant evaluation of the respective capabilities of these two approaches
has to be made on a large experimental database. From a practical point of
view, it is first necessary to identily all the material parameters. As the number
of material parameters is large (10 or 20 for the studied models), the identification
is a difficult task. The method used consists in considering all the expertimental
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Fig 6 Comparison models »s experiments for Waspaloy alloy (at room (emperature): (a) tension—

compression test; (b) tension—compression/torsion out-of-phase test (A =1, ¢ = 90°); (c) tensjor—

compression/torsion test (). = 1, ¢ = 30°), axial components; (d) tension—comypression/torsion est

(» = 1, § = 30°), shear components; (¢) tension—compression/tersion butterfly test, axial components;
(f) tension—compression/torsion buiterfly test, shear components.
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Fig 7 Comparison models vs experiments for IN738 LLC alloy (at 850°C): (a) tension tests with

various steain rates (10°¢ s~ o 10-2 57"); (b) creep tests (335 MPa, 392 MPa and 410 MPa); (c)

fatigue-relaxation test under strain centrol (sirainrate: 1035~ !, hold time: 30 s); (d) one-dimensional

ratchetting test £, : 175 MPa, E__ : 600 MPa, stress rate: 100 MPa s™'); (e) two-dimensional test

{E,,: 175 MPq, E,, = 0.4%, period: 17 s); () biaxial relaxation test under sirain control (E,,:
0.4%, E,, = +0.4%, period: 17 s).

data and carrying out a simultaneous identification of all parameters with an
optimization code (34).

With this systematic method, some difficultics could arise, especially when
the model is not good enough to quantitatively describe the set of experiments,
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In this case, the difficulty is reduced by eliminating some experimenial results.
This elimination corresponds implicitly to a reduction of the validity domain
of the model. The approach is made on two nickel-base alloys: the first at room
temperature for studying time-independent plastic behaviour (Waspaloy) and
the second one at 850°C, for studying time-dependent plastic behaviour (IN738
LC).

4.2  Waspaloy alloy

This experimental database consists of in-phase and out-of-phase tension—
torsion experiments, allowing characterization of the overstrengthening effect
(35). The most interesting experimental aspect was to exhibit, for this material,
a non-proportional strain path which produces more extra-hardening than the
classical out-of-phase test with 90° phase lag (2 = 1, ¢ = 90°). This loading may
be represented by a ‘butterfly’ in the strain plane, as: E,, = &, sin{2wt} and
2E,; = \/550 sin{wt}). The identification of the micromechanical model was
performed simultaneously on four tests (tension-compression, two tests with
A=1 (¢ =30° or ¢ =90°), and a ‘butterfly test’. On the other hand, due to
the difficulties mentioned in Section 4.1, the identification of the classical model
has been made on two tests only (tension—compression, and the out-of-phase
test, A = 1, ¢ = 90°). It has to be noted also that the version ol the kinematic
hardening rule with a limitation of biaxial ratchetting (33) was needed for a
correct modelling of the out-of-phase test. The comparison between the models
and the experiments is shown in Fig. 6a—f{dashed lines for classical model, solid
lines for polycrystalline model), using the coeflicients reported in Tables 1 and
2 (using E = 218 GPa, v = 0.34 and, for the polycrystalline model, a = 1 and
asimple interaction matrix, with fi,, = L and iz = 1.41). Only the polycrystalline
model is able to describe the extra-hardening due to the ‘butterfly” test.

42 IN738 LC alloy

An enormous experimental database was made by BAM (36) on this material
(tension tests, creep, relaxation, uniaxial and biaxial cyclic loading). Twenty
tests performed at 850°C were considered for the identification of the models.
For this temperature, there is no extra-hardening, so that the basic model in
equation (2) can be used, but a non zero recovery potential Q, is needed, allowing
the hardening to vanish versus time. As the experimental database is very large,
three kinematic variables (two with a non-linear rule (subscripts 1 and 2) and
one with Praget’s rule (subscript 3)) and one isotropic variable are chosen for
the classical model (5). The recovery potential Q, is defined in equations (7).
The comparison between the models and the experiments is shown in Fig. 7a-{
(dashed lines for classical model (NLK), dotted lines (only in Fig. 7d-f) for
classical model with a threshold in the nonlinear kinematic rule (VLK + T),
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solid lines for s e model). For the classical models, the cocfficients
polycrystalline mo ). ® Cea MPa,

are reported in Table 1 (E= 149 650 MPa, v - 0.33) and (Cy
m =937, M, = 736 MPa s and M, = 887 MPa stm for NLK model) or
(Cy =970 MPa, m = 12.5, M, = 600 MPa s and My = 575 MPa s'™" for
NLK + T model)

o+ 1

M 1 m+l M2 ——1— 7
Qz(xl, xz} = mL{ E Jz(xl) + ‘"'I‘+' '1 MZ Jz(xz) ( )

For the polyerystalline model, only ten coefficients reported in Table 2 ar¢ us?d

for the identification (with m = 979 and M = 708 MPa s1/m). As shown in Fig.

7d, the one-dimensional ratchetting effect is underpredicted for the polycrystal-
line model. This difficulty might be due al least in part to the use of a simple
power function for the viscous stress. For the classical models, the use of a
nonlinear kinematic rule with 2 threshold improves slightly the description of
the two dimensional ratchetting test (Fig. 7¢) but permils 2 good prediction of

the biaxial relaxation test (Fig. 76

5 Conclusion

The comparisons between the simutations and the experiments reported in this

paper clearly show that,even usinga simplified description of the micros:tructu‘re,
the polycrystaliine approaches have betier modelling capabilities than inductive
approaches. They give a better description and offer better predictions. An
addlltlonal advantage of the micromechanical models is that they introduce
variables which can be explained (or indirectly measured) on a microstrpclural
scale. That makes the dialogu® between metallurgy and mechanics easiel and
prov ides an assistance for the parameter identification. The large pumber of
variables in these models is a Strong limitation for the use in structpral
computations problems, but they could at least be used as reference solutions
for the development and the validation of simplified models. The same idea
seems o promote the multimechanisms and multicriteria character of_ Fhe
polycrystalline approaches, even for simplified models. 1t is then not sUrprnsing
to observe that the recent developments of the classical approaches follow 1n

some way this requirement, by introducing 2 larger number of variables 10

describe ha rdening, with successive thresholds in the evolution laws.
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