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ABSTRACT In order 1o determine a damage cumulation rule for the prediction of crack
initiation under nonproportional loading, we define a nonpropertional steady-state cyclically
equivalent to uniaxial steady-state, taking both cyclic stress—strain curve and foad history into
account. Using the same type of analysis, the model is extended to cases involving overloading.
A fundamental difference is demonstraied between imposed stress and imposed strain tests,
Three methods are proposed for computing damage cumulation: a general method and two
conservative simplified methods, derived from the general method and indicating upper bounds
for cumulated damage or lower bounds for the number of fatigue cycles to crack initiation. The
validity of methods are demonstrated in cases without macroscopic cracking, notably in erack
initiation cases. Since Litile experimental data is available on crack initiation, the method is
applied as it is to a fatigue case. This paper reports the testing of the most conservative simplified
methed, since for the other cases, exhaustive experimental results are ot vel available. In the
uniaxial case, the proposed method is compared with a nonlinear methed, the Miner damage
cumulation rule and experimental data. In the multiaxiaf case, we consider circular tensile—shear
loading and compare the experimenial number of fatigue {rupture) cycles with a lower bound
suggested by the method. In this paper the cyclic mean stress has been disregarded.

1 Introduction

Miner’s rule is the most frequently used to access cyclic loading damage
cumulation. For a constant amplitude loading sequence, the cumulated damage
is given by : D = Z,n/N((Aa,), where N(Aa) is the number of cycles to failure
(initiation or rupture) for Ag, = Ag, (resp. Ag, = Ag)), obtained from Manson—
Coflin (resp. Wohler) curve, and n, is the number of cycles at this amplitude.
Failure occurs for D = 1. In the multiaxial case, Aaq; is again an amplitude in
terms of von Mises or Tresca equivalent. The equivalent stresses and strains
are defined in the case of a tensile-shear test by

o, =(0% + 3t g = + YN Mises
o, = (6% + 47 g = (2 + 492202 Tresca

where o is the axial stress, ¢ the axial strain, t the shear stress and y twice the
shear strain.
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The Miner’s rule does not take into account the sequence effect (1-3). Mainly
nonlinear models have consequently been proposed to take this effect into
account. However, they seem too complicated and too specific, without really
optimizing calculation reliability. In fact Miner’s rule may give a better answer
than some nonlinear methods (4). Damage cumulation can be calculated
separately for crack initiation and propagation cases (2). Bilinear cumulation
rules arc then proposed to deal with the sequential effect (5). A certain number
of problems nevertheless subsist as extension of these models to a nonpropor-
tional multiaxial case. It is now relatively well established that the linear
cumulation law is suitable for some propagation cases (2, 6). The nonlinear part
consequently mainly concerns crack initiation, the definition of which is often
ambiguous (7, 8). However, if the load amplitude is not too low (at least above
the true elastic limit, which will be the case in what follows) the end of initiation
could be considered to correspond to the sudden coalescence of micro defects
in the cell structure walls or the persistent slip bands. In the present paper, we
have mainly focused on the crack initiation stage and we shall use N; to denote
the number of initiation cycles in the stress or strain controlled tests, except for
the comparison between simulation and experiment where it denotes the number
of cycles to rupture.

Our goal has been to propose a damage cumulation method for nonpropor-
tional cases (9), but our approach to the sequence effect and analysis of the
periodic overloading differs from that found in the relevant literature (2, 3). We
also demonstrate the importance of the type of loading (imposed stress or strain)
in such cases. We shall now assume that the Miner’s rule holds for an ideal
metal on an ideal loading condition, defined by the following two properties

— uniaxial cyclic stress strain curve is stable (independent of prehardening);
~ number of cycles to stabilization is negligible compared to the number of
cycles to crack initiation.

We shall discuss the consequences of discrepancies with respect to this ideal
case, but we first present some experimental results which will be described by
the model.

A sequence comprising a high amplitude followed by a low amplitude, H-L
is more demaging than the reverse sequence, L-H (1-3). These tests are
nevertheless usually carried out under strain-controlled conditions. The model
proposed confirms this property, but under stress-controlled conditions, it gives
the reverse result. Tensile overloading delays crack initiation in a stress-
controlled test (10). Our model concurs with this property. However, in the case
of a strain-controlled test, propagation will be accelerated. Periodic overloading
delays crack initiation only in the event of a relatively low overload frequency
(10). Nonproportional loading is more damaging than equivalent uniaxial
loading (in the von Mises or Tresca sense of the term) (11), but these are
strain-controlled tests. Our model justifies these results, but provides a reverse
result in the case of stress-controlled loading (12). We shall now suggest a
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cumulation method of uniaxial cases and then proceed to its microscopic
analysis, which will be extended to include nonproportional and overload cases.
We shall then use this microscopic analysis to extend the damage cumulation
mode] to the nonproportional and overload cases.

2 Cyclic Stress-Strain Curves

This chapter deals with cyclic stress—strain curve dependence on cyclic prehar-
dening in both uniaxial and nonproportional contexts, As will be seen from the
relevant literature, it has been concluded that a consequence of the formation
of stable microscopic structures, such as cell structures, is that the cyclic curve
remains stable for values below the loads which created the structures. The
formation of such stable structures is directly related to the cross-slipping
propensity and for F.C.C. metals; it is consequently related to the stacking fault
energy. It is then possible to rank the cyclic stress-strain curves for certain
metals in increasing order of dependence on load history: Cu-30%Zn v = 6
mJ/m?; 316 stainless steel y = 30 mJ/”2; Cu 7 = 90 mJ/m?; Al 7 = 200 mJ/m>
(6). A mild steel (13} included in our analysis features a cross-slipping propensity
because of its B.C.C. crystallographic structure.

2.1 Effect of cyelic prehardening on the cyelic curve

Figure 1 constitutes the core of this paper. It shows the cyclic stress—strain
curves for 316L steel at room temperature, obtained in uniaxial tensile—
compressive strain-controlled test. Curve A is a cyclic curve obtained by
increasing amplitude level on the same sample. Curve B is the cyclic curve
obtained by decreasing amplitude level from point H. Curve C is the cyclic
curve obtained by increasing amplitude levet from point N, B and C are
practically identical. This test demonstrates that the memory of low amplitudes

Ao/ 2

500

316L
gtainleas steel

Aa}z
o C1x 3.5%

Fig 1 Cyelic strain-stress curve with and without prehardening.
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is erased by high amplitudes and the memory of high amplitudes is perfectly
preserved at low amplitudes. Curve A can, in practice, be obtained using several
samples (14, 15). Curves similar to A-B curves are obtained for maximum
amplitudes (point H) equal to Ae/2 = 1%, 2%, 2.5%, 3% (15), but for low
amplitudes, Ae /2 <04% (16) or Ag/2 <04% (17) curves A and B are
superimposed. In the nonproportional case, the hardening obtained can be 70%
greater than in the equivalent uniaxial case (tests for Ag/2 < 4%) (11, 18), with
a 10% discrepancy on the stress amplitude, depending on whether the von
Mises or the Tresca definition is used (19). As in the uniaxial case, the maximum
loading amplitude effect is very pronounced. On the other hand, unlike the
uniaxial case, the cyclic curve is not stable for Ae,/2 < 0.4% (16), but at this
amplitude range, there is always overhardening in the nonproportional case.

Similar results are obtained for copper, with Ag/2 < 1.6% (the maximum
amplitude remaining at 1.6%) (20). In the nonproportional case, as compared
with the uniaxial case, experimental results reveal about 40% overhardening,
A hardening discrepancy of around 15% on the stress amplitude is observed,
depending on whether the von Mises or the Tresca definition is used. For low
plastic strain amplitudes, 0.1% < A¢,/2 < 0.2%, the cyclic stress—strain curve
is shown to be independent of prehardening in the uniaxial case (21). However,
in the nonproportional case, hardening can be 50% higher than in the uniaxial
case, even for Ag /2 < 0.2%.

Similar results are obtained for a carbon steel (6) and for 18G2A and
21CrMoV57 steel, for strain amplitudes of between 0.5% < Ag /2 < 3% (22).
For mild steel (13), hardening is found to be 30% higher in the nonproportional
case than in the uniaxial case (experiments for Ag/2 < 1%). As compared with
a 3106 steel, prehardening dependence is much lower. For pure aluminium, the
cyclic curve is practically independent of the load history. For this material the
uniaxial and nonproportional cyclic curves have been shown to be superimposed
(experiments for Ae,/2 < 0.1%) (23).

In the following analysis we do not differentiate cyclic curves given in total
strain and in plastic strain, because it does not change our qualitative analysis.

22 Microstructural analysis under cyclic loading

Pure copper is the metal which has been the most extensively investigated
(24-26). In a steady state, the microstructure is dependent on loading amplitude.
Low amplitudes will create strain-hardened areas mainly constituted of primary
dislocations. Increasing amplitudes produce successively vein structure, persist-
ent slip bands and culminates in cell structure for higher amplitudes when a
secondary system is activated.

A comparative analysis of microstructures and cyclic stress—strain curves was
performed on stainless steel, copper and aluminium, with proportional and
nonproportional loading scenarios (23). The overloading effect observed in the
case of stainless steel and copper is related to the transformation of a planar
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Fig 2 Nonproportional steady-state cyclically equivalent to a uniaxial steady-state,

structure into one containing persistent slip band and, in the nonproportional
case, to cell structures resulting from the preferential activation of a second slip
system. So the lack of overhardening effect in the case of aluminium (23) is
related to the fact that cell structures are consistently present, even for low
amplitudes. Moreover, it is shown (19) that mild steel microstructures under
uniaxial and nonproportional cyclic loading are similar, which is not the case
for 316 stainless steel. However the situation of curve B with respect to curve
C can be explained by the fact that the mean cell size varies according to the
loading amplitude (19, 25, 27) and that cell structure is relatively stable for
amplitudes below that at which it was formed, even if this stability is not perfect
(27), Figs 1, 2. In the case of aluminium the cyclic curve stability can then be
more precisely explained by postulating the existence of a minimum cell mean
size, obtained for relatively low loading amplitudes. Some authors (19, 14, 28)
relate overhardening irreversibility (comparison between A and B curves) at
high loading amplitudes to twinning. But this provides only a partial explanation.
Results reported in (29) show that cell structures are obtained for a 316L steel
cycled at Ae/2 = 1% without twinning (which only occurs if there is also 3.7%
prehardening), whereas the relative A and B situation arises for a maximum
strain amplitude of Ae/2 = 1% (15).

We can conclude finally that for a metal with very easy cross-slipping the
three following properties are equivalent

(1) uniaxial cyclic curve independent of prehardening;
(2) mean cell size stabilized at minimum size;
(3) nonproportional cyclic curve and uniaxial cyclic curve are superposed.

3 A Nonproportional Steady-State Cyclically Equivalent to a Uniaxial Steady
State

For the case of a 316L stainless steel, as shown in Fig. 2, curve B, cell size is
stable for all amplitudes below that of point H. So the metal defined by curve
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B is in the same situation as pure aluminium. It means that the uniaxial and
the nonproportional cyclic curves are superimposed. This brings us to the
following definition.

We define a nonproportional steady state as being cyclically equivalent to a
uniaxial stabilized state when the mean cell size is identical in both cases.

In practice that means, for the 316L steel, a steady state defined by (Ae,,, Aa,,),
corresponding to point N on Fig, 2, is equivalent to a steady state obtained by
Agyy = Ag,, (strain controlled) or Ag, | = Ag,, (stress controlled) with prehar-
dening up to stabilization at point H.

It is clear in the context of metals having a stable cyclic curve, the notion of
cyclically equivalent and the usual notion of equivalence defined by von Mises
or Tresca rules are identical.

4 Cumulation Rule (Metal with a Nonstable Cyclic Curve)
4.1  Uniaxial case

We consider two constant-amplitude loading sequences per block: low- followed
by high-amplitude, L-H and the reverse sequence, H-L.

Controlled strain tests
For the sequence L-H, stabilization for load L corresponds to point L,, and
for load H, to point H (Fig. 1). So the cumulated damage for the sequence is:

Dyt —ny = n/Ne(Agy) + nyy/Ni(Aey,) (1

Linear cumulation in this case seems reasonable since, as explained in the
previous chapter, the memory of load L is erased by load H. D® means that
the computation uses a Manson—Coffin curve. If we apply the sequence H-L,
the stabilization points will be H and L, (transient cycles having been disregarded
for the damage cumulation). We then have to take into account the impact of
the memory of load H on load L. In the latter case, we define the cumulated
damage as

Diy-1y = m/Ni(Aey) + n,y/Ny(Ae,) (2)

where N((Ag) is the number of cycles to initiation obtained after cyclic
prehardening up to stabilization at point H. So the cumulated damage for a
H-L sequence is larger than for the L-H sequence, since the stress amplitude
is greater at point L, than at point L, for identical strain amplitudes. We thus
obtain the result usually presented in the relevant literature. Fatigue curves with
prehardening are rare in the literature. If we want to use a usual fatigue curve
to compare damage created by H-L (L,) and L-H (L,) sequnces, we are obliged
to use a Wohler curve

a a
Din-1, > Di-1,
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Note that in the previous analysis we implicitly assumed that Wohler and
Manson—-Coflin curves correspond to each other through cyclic stress strain
curve. However this is not always exact, but it may be related (30) to transitory
cycles which have been neglected here.

Controlled stress tests
As in the previous case, the L-H sequence gives points L, and H and the H-L
sequence gives points H and L. Contrary to the previous case the cumulated
damage for a H-L sequence is smaller than for the L-H sequence, since the
strain amplitude is greater at point L, than at point L,, for identical stress
amplitudes. This shows that the H-L sequence is less damaging than the L-H
sequence. This is consistent with the fact that the prevailing factor in crack
initiation is the strain as far as the propagation stage II has not been reached.

4.2 Nonproportional case

When the cyclic stress-strain curve is independent of prehardening, for each
uniaxial and nonproportinal cycle, the damage produced (prior to propagation)
is assumed to be the same.

This seems normal as a first approximation, since everything depends on the
steady state. We have no comparison between uniaxial and nonproportional
fatigue curves for aluminium to substantiate this assumption. However, if we
disregard the loading anisotropy effect (18), these two curves are shown to be
practically identical (19, 13), for a mild steel compared with a stainless steel.
For the latter, overhardening of the nonproportional case with respect to the
uniaxial case is much higher. On this basis, we formulate the following
assumption for metals with a non-stable cyclic curve.

In the nonproportional case, the damage produced for each steady state cycle
(Aeey, A ) is identical to that of the cyclically equivalent uniaxial case defined
in the previous chapter.

With this definition the damage after n cycles at steady state (Ae.y, Aa,) (Fig.
2 point N), is n/Nf' where Nf' is the number of cycles to initiation for the uniaxial
range Aey | = Ae,, (resp. Ao, = Ac,,) under strain controlled conditions (resp.
stress controlled conditions) with a stabilization at point H. From this it can
be concluded:

In a strain-controlled context, the damage is greater at each cycle with
nonproportional loading than in the equivalent uniaxial case, whereas, in a
stress-controlled context, the reverse result is obtained (see 4.1).

There are no crack initiation results to invalidate or confirm this analysis,
but experimental fatigue test results show that, under strain control, nonpropor-
tional loading is more damaging than the equivalent uniaxial loading (19). On
the other hand, comparative results are practically nonexistent under stress
control. However, a result is reported in (12), where the nonproportional fatigue
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curve is above that corresponding to the uniaxial case (but with different
frequencies in both directions).

The above analysis can also be used to explain other cyclic phenomena. For
instance, in the strain control test mentioned above, if we plot the steady stress
amplitude versus the number of cycles to failure (19), the associated fatigue
curve will be located above the uniaxial curve. We can derive from the above
analysis a cumulated damage upper bound using only uniaxial fatigue curves:
we can apply Ag,, (Fig. 2) directly on the Wéhler curve, or Ag., on a
Manson-Coffin curve with cyclic prehardening, or Ae,, on a Manson-Coffin
curve without prehardening. (The latter is used in Section 7 for comparison
with the experiment.)

5 Simplified Cumulation Rule for Overloading

The effect of 20% prehardening is examined on the cyclic curve for a 316 steel
(14) and is observed to raise the cyclic stress—strain curve. The effect is more
significant for Ae/2 =0.5% cyclic amplitude than for Ag/2 = 1.8% cyclic
amplitude. The same effect is reported in (31). On the other hand, in the case
of copper, 20% prehardening has only a negligible effect on the cyclic curve
and we have to reach 40% to obtain a tangible effect (6). For a planar system,
such as «-brass, 20% prehardening has a much stronger effect than for 316 steel
(6). In the case of copper, the cells are shown to be formed under substantial
monotonic loading (6), whereas for aluminium, the cells are formed under
practically any loads. For an #-iron, it is shown (32) that the cells are formed
under monotonic loading and that their mean size decreases as the loading
increases (for tests between 2.5 and 7%).

The mean cell size under cyclic loading could then be assumed to be defined
approximately by the maximum stress (in absolute value) to which the material
had been subjected. The greater this stress, the smaller will be the cell structures.
Overloading consequently reduces cell size and implies, as explained in Section
3, that the cyclic curve with prehardening will be above that without prehar-
dening. However the mean cell size is never smaller than that obtained under
stabilizing on a range equal to twice the overload. The cyclic curve will
consequently be below that obtained after stabilization on a range (Aay, or Agy,
Fig. 3), equal to twice the overload (s,,, or A, , Fig. 3). On the other hand
we may assume that (see 4.1), if the two strains (resp. stresses) amplitudes are
identical, the one with the larger stress (resp. strain) amplitude is more damaging,
We then conclude the following relations.

DAL;) < DYP") < D¥(L,) = D(L,) < D(P') < D(L,) = D¥L,) < D¥L,)
Df, and D” show that we have to use respectively a Manson-Coffin curve or a

Waohler curve. Under a stress control test, a single overload delays initiation
because D(P") < D(L,). On the contrary, under strain control test (which is
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Fig 3 Effect of overloading on cyclic curve.

that applicable to thermal loads), an overload accelerates initiation because
D?(L,) < DYP’).

We can propose an upper bound of damage applicable in the event of
overloading. Under cyclic stress control condition point P” is replaced by L,
(Fig. 3) and a Manson-Coffin curve is used with Ae,,. Under cyclic strain
control condition, P’ is replaced by L, and a Wohler curve is used with Adf,
or P’ is replaced by L, in which case a Manson-Coffin curve is used with Asf.
In the case of a metal for which the cyclic curve is independent of prehardening,
the number of cycles to crack initiation will be unaffected by the overload.

In the case of a periodic overload, we can conclude (33) that, the number of
cycles to crack initiation will increase only if the relative frequency of occurrence
of overloading is low. This result is consistent with those concerning the eflect
of periodic overloading on crack propagation (10).

6 Non-Negligible Transient Cycles

The analysis in Section 4 provides no explanation as to why, in L-H sequence
under strain control conditions, we have X;n,/N¢(Aa;) > 1 (1, 2, 4). This may
be probably explained (33) by a greater importance of transitory cycles in an
L—-H sequence than in a H-L one.

Taking into account the transitory cycles, we have proposed also a damage
cumulation rule for progressive deformation (30) in cases where the direct
incidence of mean strain on damage cumulation is disregarded (it has been
taken into account only through the mean stress).

A random load is constituted essentially of transitory cycles. The method
described in Fig. 3 may be applied. As before, the Miner rule may give a good
response compared with nonlinear models, if the cyclic curve is stable. This
seems to be the case in (4) where the metal seems to have a stable cyclic curve (34).
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7 Comparison with Experiment and Other Models

7.1 Uniaxial case with alternating tensile-compressive straining

The aforementioned method is applied as it is to a fatigue case, due to the lack
of corresponding experimental data on crack initiation. We propose three
damage cumulation methods: a general method and two simplified conservative
methods. For the simplified methods, under strain control, we replace point L,
by L, (Fig. 3) and then use a Wohler curve, or we replace L, by L, and then
use a Manson-Coffin curve. In the latter case, we obviously obtain a more
conservative response. This second” method is used here for purposes of
comparison, since less complete sets of experimental results are available for
the other cases. Here we compare, through a two-amplitude block loading, our
method with experiments and also with Miner’s rule using a Miner diagram.
In this diagram, our simplified model is represented by a line AB (the tests
begin with the larger amplitude), Fig. 5d. The general model is represented by
a multilinear curve of BMNP type, Fig. 5c.

Experimental results, and nonlinear method

The fatigue experiments used (35) concern an AISI 316 steel, Z3 CND 17-12,
at room temperature, under uniaxial alternating tensile-compressive stress. Two
types of loading are used, K and L, Fig. 4. In both cases, testing begins with
the high amplitude cycles. These results have been compared (35) with the
nonlinear method of Marco and Starkey (36). The paired amplitudes concerned
(Agy/2, Aey /2) are as follows: (1%, 0.3%) for K or L-type loading, (1%, 0.2%)

Ae, /2
Ae| /2

(a) TYPE K

Aale
Ae, /2

(34

(b) TYPEL

Fig 4 Types of loading sequences.



LOW-CYCLE FATIGUE DAMAGE CUMULATION RULE 293

A AG/2 wpa
% [Ref 15]

1
AEL/ 2

!
|
!
Y
|
!
!
!
:
|
|
1

i
0'20.30‘50.60_75 + f.5 %

Fig 5 ({(a) Cyelic curves with and without prehardening for a 316 stainless steel,

for L-type loading, and (1.5%, 0.3%) for K-type loading, To compare our
method to these experiments, we need cyclic stress-strain curves with cyclic
prehardening. Such curves are available for the above-mentioned 316 steel, Fig.
I, and for another 316 steel in (14). In Fig. 1, the cyclic stress strain curve with
cyclic prehardening corresponds to the maximum amplitude given by
Aef2 = 3.5%, which does not relate to fatigue tests (35). So we use the cyclic
curves in document (14), however this surely gives rise to some error.

The proposed method

The most conservative simplified method is summarized as follows, Fig. 5a.

(1) at failure, we have n); high amplitude cycles and the associated damage
fraction is ny/N (Asy);

(2) we calculate the fictitious amplitude (Aeg /2) associated with the small
amplitude (Ag, /2); :

(3) we calculate N{Ag /2) the number of cycles (o failure associated with the
fictitious amplitude (Ag, /2) by 2 Manson-Coffin curve.
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N number of cycles to rupture
10’00000 (Ae/2=0.2%)
50000 (Ae/2=0.3%)
1100 (Ae/2=1.%)
470 (Ae/2=1.5%)

X experiment Ref [35]
0 Harco-Starkey Ref [36]

AB proposed model

\;\ = Nf(o.m/N f(0.3)

Ox
0 X=n /N (1.) (1)

Fig 5 (b) Loadings type K and L.

On the Miner diagram, we then define the linear function:

Y = [N(Ae{/2)/Ne(Ae, /2](1 — X) )

noted AB (Figs. Sb,e.d). This third stage is justified by the following equation.
ny/Ne(Aey/2) + n'2/N(Ag] /2) = 1 (5)

Y= n'2/Ni(Ae, /2)] (6)

Equation (5) traduces the fact that the cyclic curve B, Fig. 1, is stable and that
as we supposed, Miner’s rule is valid when the cyclic curve is stable. It has to
be noted that our method gives a conservative result, and that loadings L and
K are not discriminated.

Through (35), we find that the number of fatigue cycles for the amplitudes
of strain Ae/2 = 1.5%, 1%, 0.3%, 0.2%, are respectively 470, 1100, 50000,
1000000. The first comparison concerns the couple (Aey/2 = 1%,
Ag /2 =103%). The lower bound of number fatigue cycles in our model is
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YA =N f(o.s)/N 1(0.2)

0 X= n, /N, (1.) (n

Fig 5 (¢) Loading type L.

presented by the line AB (Fig. 5b), where we obtain Ag; = 0.6, Fig. 5a. The
other results are shown on Figs 5¢ and d.

7.2 Nonproportional case

For this case, we shall use the results of (11, 19), which report nonproportional
loading tests on a 316L steel ZICND 17-12, involving circular tensile-shear
loads applied under strain-controlled conditions. This type of loading is
considered to give the highest overhardening and consequently creates the largest

(1)
YA= Nf(o.vs)/Nf(o.a)

E‘—

Pu |

£

"

>-

05 —

X=n,/N; (1.5 (1)

Fig 5 (d) Loading type K.
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Fig 6 A uniaxial amplitude equivalent to the nonproportional one,

damage under strain-controlled conditions (the equivalent mean stress in this
case being zero). Figure 6 shows uniaxial and nonproportional cyclic stress—
strain curves (19), on which we have kept only the steady-state points A, B, C,
D, associated with the different types of circular loading, for which elastic strain
is easily computed. The number of cycles to failure are respectively, 4000, 3818,
2624, 1612, Fig. 7.

Our simplified method for determination of an upper bound for cumulated
damage or a lower bound for the number of cycles to failure is summarized
below. Taking into account the definition of Section 3, we replace L, by L,
(Fig. 3). This means that we find the upper bounds of strain amplitudes
(horizontal lines followed by vertical ones, Fig. 6). The plastic strain amplitudes
thus obtained, associated with points A, B, C, D, are respectively 0.6%, 0.7%,
0.87%, 1.1%. We then have to switch to total control strain conditions, since
the fatigue curves correspond to this context. The Young’s modulus is 183 000
MPa (19). For the circular loading cases corresponding to the A, B, C, D tests,
we obtain successive elastic strain amplitudes of 0.21%, 0.23%, 0.27%, 0.3 %.
The total strain amplitudes are consequently, 0.8%, 0.93%, 1.15%, 1.4%. For
the first two amplitudes, the number of cycles to failure are found on Fig. 7,
equal to 2000 and 1500, respectively. For the other two, we had to use the
fatigue curve given in (34) and we obtained 900 and 500. The experimental
values are respectively, 4000, 3818, 2624, 1612

We found a ratio of between 2 and 3 for the first two amplitudes and between
3 and 4 for the other two. This result may nevertheless be considered as a
creditable achievement, since the safety factor used by ASME on the number
of cycles is in the region of 20. The nonproportional result obtained was more
conservative than the uniaxial result, whereas the opposite was expected. This
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Fig 7 Minimal number of cycles to fatigue for some circular loadings.

may be due to the fact that, in the uniaxial tension-compression case,
propagation is easier and that extending this method, which was developed for
crack initiation, to entire fifetime assessment, intensifies its conservative tendency
in nonproportional cases. Bur af the same time, extending this initiation method
of lifetime assessment becomes valid in the nonproportional case.

8 Conclusion

Miner’s cumulation rule is assumed to be valid in the event of a stable cyclic
stress-strain curve where transient cycles are negligible. It is shown that many
experimental effects reported in the relevant literature can be described by their
discrepancy with respect to these assumptions. A simplified method of obtaining
an upper bound for cumulated damage or a lower bound for the number of
cycles for crack initiation, in the event of nonproportional loading and
overloading, is proposed. Due to the lack of corresponding data on initiation
this method has been applied as it is to fatigue. Comparison with experimental
data and a nonlinear method, in uniaxial and nonproportional loading produces
satisfactory results. We have also shown an important difference between strain-
and stress-controlled tests.
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