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ABSTRACT Assessment of the performance of a light vehicte suspension arm is carried out
by using a procedure developed o predict high-strain multiaxial fatigue life. The procedure
combines multiaxial fatigue correlation theorics and local strain estimation methods with
experimental biaxial fatigue test results, Two sets of experimental data were used in the analysis:
data from biaxial fatigue of hollow specimens and from uniaxial fatigue of solid specimens, Four
strain parameters were wiilized namely: the maximum strain, the maximum shear strain, the
Brown-Milter and the Lohr-Ellison parameters. Finally, these steain parameters were evaluated
from elastic—plastic plane stress and planc strain finite-element analysis results. Four combina-
tions of the correlating parameters and test conditions were used 1o estimate the component life
and are compared with experimental results. The combination of the Lohr—EHison parameter
and biaxial fatigue data yielded the most conservative prediclion and conversely the combination
of the maximum strain and the uniaxial data gave a non-conscrvalive estimaie. The Brown-Miller
parameter and uniaxial fatigue results predicted lives between those two extremes. These
sequences of lives were obtained from the four combinations, irrespective of the applied load,
or whether plane—stress or plane-strain conditions were assumed.

1 Introduction

Conventional methods of low-cycle fatigue (LCF) assessment of service com-
ponents often use the local strain approach (1). A fundamental assumption for
this approach is the similarity between the fatigue response at the critical location
in the component (such as at a notch root) and the fatigue response of smooth
specimens subject to uniaxial loading. However, many engineering parts are
frequently subjected to multiaxial cyclic loading (2). A multiaxial state of stress
or strain can also arise from sudden changes in geometry, such as in notches
and fillets. Published work associated with the application of the local strain
approach to multiaxial fatigue is typically concerned with multiaxial fatigue
testing and correlation theories (3), estimation of notch stress and strain (4) and
life assessment of service components (1, 5).

Extenstons of the local approach to multiaxial fatigue often make use of
multiaxial fatigue damage theories. Most studies in the low cycle multiaxial
fatigue regime use a shear strain parameter to correlate different multiaxility
conditions and to predict the number of cycles to crack initiation (6). Brown
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Fig 1 The Metro car suspension arm.

and Miller (7) developed a multiaxial fatigue failure theory employing the
maximum shear strain parameter and a secondary tensile strain normal to the
shear plane. The theory defined two cases. Case A for cracks propagating along
the surface; and, Case B for cracks propagating inwards. For the more severe
situation of Case B, Kandil et al. (8) suggest using the Tresca parameter. As an
extension to the Brown-Miller model (7), Lohr and Ellison (9) developed a
theory which applies the shear parameter acting on a through thickness plane
as the correlating parameter in all cases. The Lohr—Ellison theory was applied
to thin-walled specimen results where Case B dominated the fatigue life in most
cases (9, 10).

Only a limited number of studies of the influence of geometry variation on
predicting multiaxial fatigue damage development and life assessment of
components (5, 11) have been carried out. Furthermore, life predictions using
biaxial data tested under the full range of biaxiality ratios (Brown-Miller, Cases
A and B cracks), do not appear to exist in the literature. Fash et al. (11) compared
the fatigue damage process using thin-walled specimens and solid notched
specimens in torsional loading where Case A cracks dominate the fatigue life.
They show that the stress/strain gradient in the solid notched specimens
constrained the development of cracks in the circumferential direction,

In the present work biaxial fatigue test results, multiaxial strain correlation
parameters and finite-element elastic-plastic analyses were used to predict the
fatigue life of a car suspension arm, Fig. 1. Estimated lives obtained from biaxial
and uniaxial experimental results of thin-walled hollow specimens (10) and solid
smooth specimens (12) respectively, are compared with the component fatigue
lives,

2 Experiments and Results

Low-cycle fatigue (LCF) biaxial data for the suspension arm EN15R (BS150
M36) material were obtained from thin-walled specimens subject to internal
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Fig 2 Fatigue results: (a) biaxial hollow specimens; (b) uniaxial solid specimens.

and external cyclic pressure and cyclic axial load. The chemical composition of
the EN15R material was (%wt): 0.4C, 0.298i, 1.47Mn, 0.019P and 0.004S.
Young’s modulus at room temperature was 205 GPa and the 0.2 percent proof
stress was 438 MPa. The specimens were tested under four different ratios of
diametral to axial surface strains, ¢, namely — I, —v, 0 and -1, representing
the full range of biaxiality ratios. Details of the experimental results are given
clsewhere (14). Uniaxial tests were also conducted, using solid hourglass
specimens (12) to obtain the material cyclic behaviour and LCF lives for a range
of strain amplitudes. All experimental work was performed under constant
amplitude strain control using servo-hydraulic test machines. The fatigue
response of the specimens are shown in Fig. 2 in terms of the applied axial
strain range as a function of the fatigue life. For pure shear tests with ¢ = — 1,
the axial strain range was equal to minus the diametral strain range.

Car suspension arms (Fig. 1) were subject to constant bending load control
amplitudes at much higher loads than for service conditions (£3). The tests were
a simplification of the random complex loading system which exists in the
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Fig 3 Finite-element mesh, strain gauge locations and applied load.

service condition. Each arm was constrained in the fatigue test through two
bearings, labelled LB and MB in Fig. 1, lying in the outer plane axis (z). A
uniaxial load was applied along the y-axis to the right bearing (RB). The
constraints resulted in a bending moment about the z-axis.

The loading arrangement induced a significant stress concentration region
during the fatigue tests near the boss, MB in Fig. 1. In this area localized
plasticity was identified, leading to the development of fatigue cracks. Initial
elastic measurements were carried out at a load range of +3 kN to determine
the clastic stress response using strain gauges fixed to the suspension arm. The
strain gauge locations are shown in Fig. 3. An axial (x) stress concentration
factor of about 1.95 between the ‘critical’ site at location 5 and the ‘normal’
stress at location I was measured. A similar concentration factor (1.86) was
obtained using photoelasticity analysis (13). Additional strain gauge measure-
ments at the critical location were conducted along the out-of-plane (z) direction.

Two load ranges were examined; six fatigue tests were carried out under a
load range of +14.8 kN and seven tests were conducted under a load range of
+8.8 kN. For a given load range the cycles to failure from test to test varied
significantly, with a factor of about two on life for the + 14.8 kN range and a
factor of about ten on life for the +8.8 kN tests.

3 Finite-Element Simulations

A two-dimensional model of the suspension arm was constructed, Fig. 3, using
a finer mesh in the critical area. The left bearing (LB) was radially constrained,
allowing rotation about the z-axis, and the middle boss (MB) was fully
constrained assuming high friction force. Vertical load was applied to a line of
nodes in the y-direction at the right bearing (RB) as shown in Fig. 3. Two
boundary conditions were examined: plane-stress together with an approxi-
mation of the out-of-plane thickness variation; and, plane-strain with a uniform
thickness.
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An assessment of the accuracy of the finite-element models was carried out
at the same load range (+3 kN) as the elastic experimental test. The strains
from the finite-element analysis were obtained from the approximate locations
of the strain gauges (Fig. 3) for plane-stress and plane-strain conditions. The
simulated stress concentration factor was 2.25 using the planc-stress model and
1.88 using the plane-strain model, compared to the measured concentration
factor of approximately 1.95.

For the plane-stress analysis the stress ranges at locations 1 to 3 were about
10% less than the strain gauge measurements, while close to the critical area
at locations 4 and 5, predicted strains were about 2% higher than the measured
strains. In the plane-strain analysis the strain ranges at all locations were within
+ 5% of the experimental results. In both plane-stress and plane-strain analysis
the maximum predicted strains approximately coincide with the location of the
strain gauge exhibiting the maximum measured strains.

The uniaxial cyclic elastic—plastic stress—strain relationships (12) obtained
from solid hourglass specimens, were used as input to the finite-element
simulations. Analyses were performed assuming plane-stress or plane-strain
conditions at the two experimental cyclic load levels (+ 8.8 kN and + 14.8 kN)
and the cyclic elastic—plastic multiaxial strain ranges obtained at the critical
location were subsequently used in a life prediction assessment described below.

4 Life Prediction Assessment Procedure

A general procedure which applies the biaxial fatigue data to predict the life of
the service component subjected to constant amplitude, in-phase, multiaxial
fatigue loading is shown schematically in Fig. 4. The procedure was carried out
by first providing curves of equivalent strain parameter versus cycles to failure
(master curves) from the biaxial or the uniaxial fatigue tests (10, 12), and,
secondly, computing lives from these master curves corresponding to the
finite-element elastic-plastic simulated strains at the critical surface location
(location 5, Figure 3). Four LCF strain-correlating parameters were used as
follows.

4.1 The maximum stress parameter

Total maximum axial strain ranges were correlated to the LCF lives using the
tradional Coffin-Manson and Basquin equations, where the total strain range
Ae' is given as the sum of the elastic and plastic strain ranges, Ac® and As”
respectively so that

Ae, = A& + Ae> = AN + BN * (1)

where Ag, is the longitudinal strain for the solid and hollow specimens and the
axial strain for the suspension arm. A, B, z and f# are material constants.



504

MULTIAXIAL FATIGUE AND DESIGN

— T

MATERIAL
LCF
PROPERTIES

UNIAXIAL BIAXIAL
FATIGUE FATIGUE
MATERIAL MASTER CURVES
MULTIAXIAL
gl FATIGUE | N -
PARAMETER | ™
CYCLES TO FAILURE
/ Y 1
LOCAL STRESS/STRAIN PAEDICTION OF LIFE CRACK OBSERVATIONS
FINITE-ELEMENT oo COMPONENT OR <} FRAGTURE HODE
NEUBER'S RULE NOTCH SPECIMEN GRACK GROWTH
CORREZATION
LOCAL STRAIN CBSERVATIONS OF
MEASURED FROM COMPONENT FATIGUE THE COMPONENT
STRAIN-GAUGES LIFE FRACTURE
A

COMPONENT TESTING

Fig 4 LCF constant amplitude life prediction procedure.
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42  The Brown-Miller strain parameter

Y © " P
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4.3 The Lohr-Ellison paraineter
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Ay, = ?—{-0.28“:' + 3+C£:‘ = AN * + BN; (3
where
v o8, —e g +e ,
LA S ef =22 for the suspension arm
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v o - e, + & . .
'; =- L and 5 for the thin-walled specimens
4.4 The maxinman shear strain parameter
At . Y max i Vmax p_AN—:t BN*,B 4
Seq - 2 + 2 - f + f ( )
where
?mi - Emax — Emin
2 2

The material constant C in equations 2 and 3 was assumed to be 0.2 since this
was shown to correlate well with earlier results (9, 10). An iterative technique
was required to obtain, for each equation, the fatigue life corresponding to the
simulated equivalent plastic and elastic strain ranges. Equations (1) and (2) were
used to evaluate master curves employing data from the fatigue tests of the
uniaxial solid specimens, while equations (3) and (4) were used with data from
the biaxial thin-walled specimens.

The Brown-Miller parameter was evaluated for the uniaxial solid bar
specimens by assuming that e, = —ve, and substituting separately for elastic
and plastic components, using —v, = 0.3 and —v, = 0.5 where v, and v, are
elastic and plastic Poisson’s ratios respectively. Insertion of these assumptions
into equation (2) give

I 10,26, = 0.72A¢5 + 08428 5)
The maximum shear strain parameter was evaluated with the thin-walled
specimens using the biaxiality conditions where Case B cracks dominate the
fatigue lives (10), i.e. excluding the pure-shear data (¢ = — 1).
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Table | summarizes the combinations of the testing methods and the
correlation theories and shows the constants used with each master curve to
predict the car suspension arm fatigue life,

Table 1. Master curves used in the life prediction analysis

Strain Experimental Master curves constants
parameter method Elastic Plastic
B B A %
Maximum Uniaxiat
strain (e,,,) solid 0.013 0.111 0.589 0.563
specimens
Maximum shear Biaxial
strain (;,,./2. holtow 0.011 0.169 0.067 0.396
case B) specimens
Brown-Miller Uniaxial
(a2 +028) solid 0.0082 0.111 0.373 0.563
specimens
Lohr-Ellison Biaxial
(#2020 hollow 0.0127 0.167 0.141 0.468

specimens

Estimates of fatigue life for the car suspension arm using the four master curves
are shown in Fig. 5 for plane stress and plane strain conditions. The predicted
lives using the four cases gave the following order with the shortest predicted
life first.

(a) Lohr-Eilison parameter and biaxiai fatigue data.

{b) Maximum shear strain parameter and biaxial fatigue data.
(¢) Brown-Miller parameter and uniaxial fatigue data.

(d} Maximum principal strain and unixial fatigue data,

This was the sequence of predicted lives irrespective of the applied load range
and also whether the plane stress or plane strain conditions were assumed to
prevail.

5 Discussion

Fatigue design of service components should normally include factors about
the manufacturing process, for example casting tolerances, surface roughness,
residual stresses and other difierences between similar components. Some of
these factors probably contributed to the large scatter in the suspension arm
fatigue results. Such factors were not included in the present analysis, however,
and therefore the predicted lifetimes can only be assessed in a qualitative manner.

Of the fatigue life estimates for the suspension arm there are two immediate
observations. Firstly, the estimates using biaxial data were consistently safer
than those using uniaxial data, and secondly, the maximum strain parameter
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Fig 5 Estimated LCE lives for the suspension arm: (a) using plane-siress simulations; (b) using
plane-strain simulations,

predictions were non-conservative compared to the results using the shear strain
parameters. These two observations suggest that safer fatigue designs can be
obtained using thin-walled biaxial data correlated with multiaxial strain
parameters. Similar observations about conservative life estimates from thin-
walled speciments subject to high strain torsion-tension tests were made by
Miller and Chandler (14).

Finite-element simulations and strain gauge measurements have shown that
at the suspension arm critical location a positive stress ratio (/) existed on the
sutface. In the Brown-Miller terminology, Case B cracks would grow into the
component wall (7). It was also assumed that Case B cracks dominated in the
testing of the solid uniaxial specimens. For Case B cracks, the maximum shear
strain plane is 45° through the thickness, and Brown-Miller and Lohr—Ellison
theories are identical (9). For the thin-walled hollow specimens under a pure
shear (¢ = —1) Case A was assumed to prevail (10). Thus for consistency with
the Brown-Miller theory, the pure shear data was removed when the biaxial
data was evaluated to obtain the master curve using the maximum shear strain,
equation (4).
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Fig 6 LCF life correlation of hollow and solid specimens using the Lohr-Ellison parameter,

The wall thickness of the biaxial specimens was about 1 mm (10) and it has
been shown that for this geometry (15) there exists a stress and strain state
which approximates to plane-stress, with almost no strain gradient across the
specimen wall. The uniaxial specimens used an 8 mm diameter, and the LCF
lives of the solig specimens were about three times greater than the LCF lives
of the hollow specimens, when tested under the same conditions. This is shown
in Fig. 6 where fatigue lives are correlated with the Lohr—Ellison strain
parameter. This difference in lives is associated with a decreasing inward radial
stress/strain gradient from the surface to the mid-section of the solid specimens.
Similar observations of the difference in the fatigue lives between solid and
thin-walled specimens were previously obtained from biaxial tests of other steels
(11, 14, 16). Therefore, for improved fatigue estimates the influence of the strain
gradient is required.

In the past, thickness stress modifications were introduced (17) to high cycle
fatigue (HCF) results. To accommodate for the geometrical variation between
the solid and thin-walled specimens in LCF, a simple analysis was developed
which modifies the surface strain with a parameter based on the inward strain
gradient.

The subsurface analysis evaluated an incremental damage in a critical path
through the specimen thickness. This damage value is relative to the distance
from the surface and used the simulated local strain gradient at finite distances
under the surface. The damage values were then used to modify the lives
corresponding to each incremental simulated strain employing a biaxial fatigue
master curve. Finally the values of the modified subsurface incremental fatigue
lives were summed up in a similar way to Miner’s rule to give the total life to
failure. The damage analysis is given in the Appendix.
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Fig 7 Estimated LCF lives using Lohr-Ellison parameter and subsurface analysis,

The subsurface analysis was used to calculate the suspension arm lives using
the Lohr-Ellison theory. Figure 7 shows the estimated lives using plane stress
and plane strain conditions. The predicted lives are less conservative than those
obtained with the surface strain (Figs 5 and 6) and similar to those obtained
using the solid specimens and the Brown—Miller parameter.

6 Concluding Comments

A high-strain, constant amplitude multiaxial fatigue life prediction procedure
was applied to predict the fatigue lives of a car suspension arm subjected to
cyclic loading. Two sets of experimental data were used for the life prediction,
(a) from the biaxial fatigue of thin-walled specimens, and, (b) from the uniaxial
fatigue of solid bar specimens. Simulated cyclic strains at a critical location
were used together with multiaxial strain prediction theories to predict the lives.

At high cyclic loads conservative estimates of service component life were
obtained using LCF data from thin-walled biaxial specimens, employing
Brown-Miller and Lohr-Ellison multiaxial fatigue correlation. At the lower
load range less conservative results were obtained. The predictions of the
component fatigue life from uniaxial solid specimens were non-conservative,
particularly when the biaxiality state was not included.

The shorter estimated life from the thin-walled biaxial fatigue data, as
compared with the solid specimen fatigue data, was attributed to the geometrical
differences and propagation of fatigue damage through the component thickness.
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Appendix

Subsurface analysis

In the proposed subsurfaces damage analysis D, is defined as the incremental
through thickness damage and N, as the cycles to failure related to a particular
increment. Applying Miner’s rule to the damage model assume that

D,=_" (A1)

where D, is the damage for a particular equivalent strain calculated from the
master curve of equations (3) and (4), and
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XD, =1 andalso, N = D N, {A2)
The input strain to calculate N for a particular increment is calculated as follows

£ + &
= i i—1
o= (A3)
where: €, = average incremental strain; » = increment number; # = 1 in the
surface increment; i = increment edges; i = 0 at the surface (i = n — 1),
The incremental damage parameter D, which is a nondimensional strain
gradient value, is given as
&, — &
p =izt M Ad)
n AB (
where: Ae = total strain gradient at 1 mm distance which is the wall thickness
of the biaxial specimens.
Next, the relative distance from the surface of each strain increment is taken
into account by introducing an ‘effective incremental damage parameter’, D¥,

given as
m=n—1
Df = Dn{l ~( Z Df)} {AS5)
m=i

This means that each incremental damage is modified by a value that is relative
to its surface position. After calculating the modified incremental damage, the
total life to failure is summed in a similar way to Miner’s rule

Neg = ) (Ne DY) (A0)
1





