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ABSTRACT The purpose of the present paper is precisely the formulation of a multiaxial
fatigue criterion that takes into account the stress gradient effect. The work starts with a careful
analysis of experimental results of uniaxial cyclic normal stresses (such as bending) and of cyclic
shear stresses (such as torsion). This examination shows that the fatigue endurance is mainly
affected by the gradient of normal stresses. Variations of the gradient of shear stress in torsion
tests, do not alter significantly the corresponding endurance limit. Based on these conclusions
a gradient dependent fatigue criterion of the —critical plane type — is formulated. The critical
plane is the plane of maximum shear stress amplitude. The criterion is expressed as a function
of the shear stress amplitude, of the normal stress acting on the critical plane and of the gradient
of the normal stress. The proposed formula is then applied in fully reversed in-phase bending
and torsion loading. It is theoretically demonstrated that the proposed gradient-dependent
criterion leads, for this kind of loading, to the well-known ellipse arc formula of Gough and
Pollard. A noticeable result is that within the proposed framework the discrepancies apparently
existing between experimental results with gradient-free stress conditions and of results
incorporating non-zero stress gradients are eliminated.

1 Introduction and Brief Overview of Previous Work

For a uniaxial normal stress load, it is well known that the presence of a stress
gradient has a net beneficial effect on the corresponding endurance limit. For
example, the endurance limit in fully reversed bending of many metals, is
significantly higher than the corresponding limit in fully reversed tension—
compression. The higher values of bending endurance limits have to be attributed
to the beneficial influence of the gradient of the normal stress on the fatigue
strength of the metal. Although some attempts for modelling the stress gradient
effect under uniaxial normal stress cyclic loads have already been presented,
similar attempts for multiaxial stress conditions have not yet been carried out
in a systematic way.

The multiaxial high-cycle fatigue criterion is a rather old research topic. The
systematic study of the fatigue behaviour of metals under multiaxial stress
conditions was initiated by Gough and Pollard (1) who proposed as early as
1935 the ellipse quadrant empirical formula for mild metals subjected to in-phase
bending-twisting. The work of Gough and Pollard has been completed with
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the participation of Clenshaw in 1951 (2), with the proposal of the ellipse arc
formula for hard metals:

T:l 5 )(‘ aa = f (Ta
(&) +(L-1)%) +(2-D) %< M

where ¢, and 7, are respectively the amplitude of the normal stress due to
bending and of the shear stress due to torsion. The constants f and ¢ are the
endurance (fatigue) limits under fully reversed bending and fully reversed torsion
respectively. The above-mentioned ellipse quadrant formula for mild metals is
a particular case of equation (1) corresponding to f/t = 2. After the pioneering
work of Gough and Pollard many researchers addressed the question of the
multiaxial fatigue criterion. Several proposals have been accumulated over the
years. Some well-known old formulas are the Sines, Crossland and Findley
criteria. More recent proposals have been formulated by Dang Van and
McDiarmid. A critical examination of these proposals can be found in (3).
However, none of these approaches have addressed the question of the influence
of the stress gradient on the fatigue endurance of metals.

The study of the stress gradient related problem has been developed in a
somewhat independent way mainly within the framework of uniaxial stress
systems (bending) or in relation to the fatigue resistance of notched specimens,
The notch effect will not be examined specifically in this work. Early research
of Moore and Morkovin (4) on rotating—cantilever bending of plain cylindrical
specimens of the same length but of different radii showed a substantial increase
of the fatigue limit with the decrease of the radius (that is with the increase of
the normal stress gradient). These authors proposed an explanation of the size
effect based on the assumption that a specimen which fails under reversed
bending behaves as if a fatigue crack started slightly below the surface of the
specimen, where the stress is slightly lower than that at the surface. The depth
of this critical surface layer is supposed to be a material constant. Rotating—
cantilever bending tests have been conducted also by Cazaud (5) in France, in
the early sixties. Cazaud reached similar conclusions as Moore and Morkovin.
Constant moment rotating bending tests on specimens of various radii and
lengths have been carried out by Pogoretskii and Karpenko in the middle of
the seventies (6). They found a decrease of the fatigue limit with the increase of
the radius but also with the increase of the length of the specimens. A
comprehensive analysis of the gradient and size effects based on a statistical
theory of fatigue failure has been carried out by Pavan (7). More recently, an
empirical gradient-dependent model for uniaxial normal stress states has been
proposed by Brand and Sutterlin (8).

An attempt at modelling the gradient effect under multiaxial fatigue loading
has been made by Flavenot and Skalli (9). This work is merely an extension of
the concept of the critical surface layer depth advanced for uniaxial stress states
by Moore and Morkovin. The more recent work on gradient-dependent
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multiaxial fatigue criterion that the authors are aware of is a paper by Munday
and Mitchell (10). These authors used the Sines criterion to analyse fully reversed
biaxial fatigue data obtained by Sawert (11) in the carly fifties. In the plane of
the amplitudes of the two existing principal stresses ¢,, and o,, the Sines
criterion is an ellipse. Monday and Mitchell showed that among Sawert’s results
the gradient-free data fall on the Sines ellipse, whereas the data with a non-zero
stress gradient fall outside the Sines ellipse, thus proving the beneficial eflect of
the stress gradient. However these authors did not formulate any fatigue formula
incorporating the stress gradient.

The purpose of the present work is precisely to propose a gradient-dependent
fatigue criterion and evaluate its predictive capability for non-zero gradient
multiaxial stress systems. First, uniaxial experimental results (bending and
torsion) will be carefully examined to get some insight into the gradient effect.
Finally, it is useful to notice that often the gradient problem has been referred
to in the literature as a size effect problem. In this work an eflort will be made
to distinguish between gradient effect and pure size effect.

2 Uniaxial Non-Zero Gradient Fatigue Tests
2.1 Fully reversed bending

Many tests indicate that the fully reversed tension-compression fatigue limit is
the lowest that can be obtained from a fully reversed normal stress uniaxial
test. Fatigue limits obtained under fully reversed bending conditions are always
higher than the tension—compression limits. The higher values of bending fatigue
limits have to be attributed io the beneficial influence of the normal stress
gradient on the fatigue resistance of the metal.

Fully reversed bending conditions can be distinguished in plain bending and
rotating bending. For identical cylindrical specimens of the same material the
fatigue limit in plain bending is usually higher than the limit obtained in rotating
bending (5). This difference could be explained on the basis of a statistical
approach as in rotating bending all the external surface of the specimen
undergoes the same (maximum) stress range, whereas in plain bending only the
upper and lower parts of the external surface of the specimen are submitied to
the maximum stress range. However, this problem will not be addressed here.
Therefore, for the purpose of the present work, which is a first approach to the
gradient effect under multiaxial stress conditions, differences between plain
bending and rotating bending will be disregarded.

A more important distinction to be taken into account is the distinction
between constant moment tests (such as four-point bending) and varying
moment experiments (cantilever bending). In the four-point bending test the
critical section is any section in the interval L < x < L + /, where the bending
moment is the same at any time and equal to M = FL, Fig. 1a. In this interval
the bending stress ¢, does not vary in the axial direction (x-axis). It varies only
along the depth of the specimen (p-axis). The gradient of ¢, is a vector the
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Fig 1 Cantilever and constant moment bending tests,

components of which are the partial derivatives of o, with respect to x, y and
z. Here the gradient has only one non-zero component, the derivative with
respect to y. The bending stress and its gradient are then

FL |0a,, oo, FL 0o,
g, =—1, = = — . ;
== T 5 By oy 1 oz
L<x<L+1 —R<y<R (2)

In the cantilever test the bending moment is a linear function of x, M = F(L — x),
Fig. 1b. Therefore, the normal stress due to bending varies along the depth and
the length of the specimen. Its gradient has two non-zero components, the
derivatives with respect to x and y. The bending stress and its gradient are
given by the formulas

O I ox 1° Oy I 0z

_ —F(L-x) y [aa“ _F  0a, —FL-x) ¥, 0]

0<x<L —-R<y<R (3)

At the most strained point of the cantilever (x = 0, y = R), equations (3), provide
the gradient of the stress component

do —a do,, a 0o

XX XX XX LR (4)

ox L dy R 0z

where o, = —(FL/I)R is the normal stress at x = 0, y = R. Hence, in view of
equations (4), the fatigue limit in the case of cantilever bending will depend on
both the radius and the length of the specimen. For constant moment tests a
fatigue crack can potentially appear at L < x < L + 1, y = R. The gradient of
the normal stress from equations (2) is
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where o,, = (FL/I)R. Therefore the fatigue limit will @ priori be independent of
the tength of the specimen.

Constant moment rotating bending experiments performed by Pogoretskii
and Karpenko (6) and by Pavan (7) on cylindrical specimens of the same radius
and different lengths indicate however a dependence of the fatigue fimit on the
length of the specimen. This dependence cannot be explained within the
framework of a gradient-dependent theory and must be attributed to a pure
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size effect. To model the pure size cffect a statistical theory of latigue (non)
failure might be used. Varying moment experiments (cantilever bending) also
indicate a dependence of the fatigue limit on the length of the specimens. This,
in view of equations (4), may be captured, at least partly, through the gradient
of the stress components. Figure 2 shows constant moment rotating bending
results adapted from the work of Pogoretskii and Karpenko (6).

In Fig. 2a the pairs (fatigue limit, L) have been plotted for specimens of the
same radius. This figure shows the pure size effect on the fatigue limit and not
any gradient effect, because for constant moment bending tests the gradient of
the normal stress depends only on R, see equation {5). In Fig. 2b the pairs
{fatigue limif, R} have been reported for constant length specimens. This figure
represents the gradient effect on the fatigue limit. A rough estimate of the
influence of the radius R and the length L on the fatigue limit f, can be gained
by inspecting the general {linear) trends of the graphs f vs R and Svs L

It can be seen from these figures that the general trend of the dependence of
the fatigue limit on R has a slope equal to —4.4 (Fig. 2b), where the trend of
the dependence on L has a slope of only —0.2 (Fig. 2a). This means that the
influence of the stress gradient on the fatigue limit seems to be an order of
magnitude higher than the influence of the pure size effect. According to
tension—compression experiments performed by Phillips and Heywood (12),
there is no influence of the specimen size on the fatigue limit. Similar conclusions
can be drawn from the work of Massonet (13) who observed reductions of the
order of 5% in tension—compression fatigue limits and of more than 20% in
rotating bending fatigue limits for cylindrical specimens with increasing radii.
To summarize, the size effect on constant-moment bending fatigue limits is an
order of magnitude weaker than the stress gradient effect. The influence of the
size seems 1o be even weaker on the tension-compression fatigue limit.

Only fully reversed uniaxial normal stress systems have been examined in
this section. It is reminded that a tensile mean normal stress reduces the
endurance limit, whereas a compressive mean stress leads to a net increase.
Experiments show that the dependence of the fatigue limit on a mean normal
stress can be accurately described by a linear relationship (14).

2.2 Fully reversed and asypunetrical torsion tests

The study of the fatigue endurance of metals under shear stress loading is carried
out with the help of cyclic torsion tests. These experiments can be fully reversed
and/or asymmetrical torsion tests, An asymmetrical torsion test is a test where
a static torque is superimposed on a varying torque. The gradient of the shear
stress is inherent in torsion tests. Therefore, to study the influence of the shear
stress gradient on the fatigue endurance we have not at our disposal two distinet
groups of results; one gradient free and the other with non-zero stress gradient,
as in uniaxial normai stress loading (such as tension-compression and bending).
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Fig 3 Stress states in fully reversed and asymmetrical cyclic torsion experiments.

To draw some conclusions on the shear stress gradient effect, results from
fully reversed and asymmetrical torsion tests will be analysed. First of all it is
important to point out that the fatigue limit in torsion does not depend on the
mean value of torsion. This means that the limiting amplitude of the shear
stress, corresponding to the non-fracture by fatigue of two specimens, one
subjected to fully reversed torsion and the other to asymmetrical torsion, is the
same. The uniqueness of the fatigue limit in torsion is a well-established
experimental fact (14).

In Fig. 3 an analysis of the shear stress states is presented for two sinusoidal
torsion loadings, one fully reversed and the other with a mean value. Let us
assume that the two loadings are of a magnitude corresponding to the fatigue
limit level. The extreme states in the case of fully reversed torsion will be denoted
as states F and F', whereas the corresponding states for asymmetrical torsion
will be denoted as A and A’ (see Fig. 3). Let us examine the shear stress
distribution for the homologous states I and A. Clearly the shear stresses 1
and 1, are different due to the mean torsion present in the asymmetrical loading
case. Consequently the gradient of the shear stress is also different in the two
cases (Fig. 3). Identical observations can be made for the states I'" and A"

Therefore one has
d
} and {tg- # Ty td } (6)
4 dr A

dr dr
Tp # Ty, ar

T

L
e dr
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However, the amplitude of the shear stress is the same in both loading cases
as it was pointed out before and equal to the (unique) fatigue limit in torsion.
Tp =T Ty~ Ty

z 2 ! )

The uniqueness of the fatigue limit in torsion implies two things: its independence
of a mean torsion but also its independence with respect to the gradient of the
shear stress. The two cyclic torsion loads examined above led to the same
(unique) torsion fatigue limit, although the mean shear stress states and the
shear stress gradicnts were different. Based on this conclusion it is natural to
assume that under a general multiaxial cyclic loading the limiting stress state
corresponding to non-fracture by fatigue is unaffected by the presence of a static
shear stress state and also by the gradient of the shear stresses.

3 Multiaxial Gradient-Dependent Fatigue Criterion
3.1 Formulation of the criterion

A critical plane fatigue formula will be used as a basis for the development of
a gradient-dependent fatigue criterion. The critical plane, denoted as P, is the
plane on which the shear stress amplitude becomes maximum. The fatigue
formula is a linear combination of this shear stress amplitude, denoted as .7,
and of the maximum value . (;, , that the normal stress .| “acting on the critical
plane P reaches during a loading cycle, i.c.

Tt % fan S (&)

where o and y are material parameters. To fix ideas let us consider a body
cyclically loaded in a proportional manner with the external loads varying
according to a sinusoidal law. The stress state around the most strained point
of the body, denoted as O, can then be written as

a;; = a;; sin(wt) + a5 Li=xpz 9)

where 6;; is the amplitude of the stress and a;; its mean value. Let us denote
by n;, i = x, y, z, the unit vector normal to the critical plane P. For the loading
described by equation (9), the shear stress amplitude 7, is then given by

T - A ~ 2
7, = \/ak,n,crkmnm — (m;6;;m; (10)
and the maximum value . [, of the normal stress is given by
hnax = (65 + ai)n; (11)

The summation convention over repeated indices has been assumed. The
criterion described by equation (8) reproduces correctly the independence of
the limiting stress state from a superimposed static shear as well as its linear
dependence with respect to a static normal stress state. This criterion will now
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be modified to include the experimentally observed beneficial effect of the stress
gradient. If the stress state given by equation (9) is not homogeneous, then the
shear stress amplitude 7, and the normalstress .| will vary with little variations
of the coordinates x, y and z, around the point O of the body under consideration.
However the variation of 7 (its gradient) should not have any influence on the
limiting stress state since as it was seen in the previous section the torsion
fatigue limit is unique. It remains to examine the gradient of .4, .. The normal
stress .4, as defined by equation (11) is a scalar. Therefore its gradient will
be a vector, denoted as %, with the components

0L, O, DL
({) — 13X mnax 1K
7 [ ax T dy 0 8z (12)

The norm of this vector, denoted by % and given by the following relation,

oo a Il'n‘:ﬂc : a‘n;ax : a |n;ax :
= o) (o) + (o

will be used as an indicator of the influence of the normal stress gradient. 1t is
natural to assume at this point that the influence of the gradient % is associated
with a non-zero value of ..4;.,. A possible way Lo salisfy this assumption is by
introducing in the new criterion the product of ¥ by .4 so that the influence
of % vanishes with vanishing normal stress, In view of these, the following
multiaxial gradient-dependent fatigue formula is proposed.

Z + C‘f‘."m‘n\( o lj\l (_(;7<= 1!!21\'> < 7 (14)

where f§ is a material parameter and the MacCauley bracket ¢+ is defined as
<Imn> = '-'ln;nx if - in;:u >0
<"'!m‘u.t> =0 if - in;nx <0 “ 5)

The above choice nieans that the gradient effect is neglected not only in the
case of vanishing normal stress (.{,,, = 0), but also in the case of a fully
compressive normal stress cycle (.1 < 0). This choice can be considered as a
reasonable precaution at this stage of the model development, as in the authors
best knowledge, experimental data where .4 _is compressive do not exist.

3.2 Identification of the material parameters

The parameters « and » of the proposed criterion given by equation (14) can
be refated easily to the fully reversed tension—compression fatigue limit denoted
by s and to the torsion latigue limit denoted by . In fact in the case of torsion
one has .7, = t, ., = 0, ¥= 0, and application of equation (14) provides 7 as

7=t (16)
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For fully reversed tension—compression, 7, = s/2, .{;, =s/2, =0 and « is
equal to:

2t

o=——1 (17)

S
A fully reversed constant moment bending test can be used to obtain . Let us
denote by f the corresponding fatigue limit. Then g, =0,/2=f/2 and
“nax = 05/2 = f/2. With the help of equations (5) and (13) the components of
the gradient of .4, and its norm % are respectively

— |:a—‘"u‘ =0 —aNmax _ A09,,/2) — i O ban = O:I' Y= 'f— (18)

|/

ox Oy dy 2R @z 2R
Applying the criterion, equation (14), substituting the parameters v and « from
equations (16-17) and solving for 8 we obtain

t t
B=2/R (s _F) (19)

In the following section a comparison of the predictions of the proposed criterion
described by equation (14) with experimental results will be provided.

4 Applications

4.1 Fully reversed bending

The purpose of this paragraph is to relate the fatigue limits in fully reversed
bending and fully reversed tension—compression. For the constant moment case
the calculations have already been done before, during the evaluation of the
parameter . Applying the criterion, substituting y and « and solving for f we
obtain

s
B —— 20
¥ = /R (20)
where the constant x = f(s/2r) has been introduced for convenience. It is
interesting to apply the proposed criterion in the case of cantilever fully reversed
bending. The corresponding endurance limit is denoted by f’. Then,
Ty =04/2=["12, A =0,/2=[/2. With the help of equations (4) the
components of the gradient ¥ of " are

max

Obpas _ A0u/2) _ —f" Qloax _80/D) _ [ Blpy _ o) _

= 0 (1)

ox ox 2L 9y dy 2R’ oz 0z

The norm % is equal to

L — 7 1\ mF 1
" (E)*(ﬁ) ==L S (22)
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Substituting the above values of 7, ., and % into the proposed criterion,
equation (14), introducing y and « from equations (16-17) and solving for f*
one obtains

5

K RZ 144
1——— {1+=
ﬁ( *LZ)

where x is the same as before. From equation {23) it is clear that the endurance
limit in cantilever bending depends not only on the radius R of the circular
section of the specimen but also on its length L. This dependence is due only
to the gradient of the normal stress. It is not the demonstration of a size effect.
For specimens with R« L, the ratio R%/[? can be neglected. Under these
circumstances the fatigue limits in fully reversed constant moment and cantilever
bending of specimens of the same radius coincide and are related to the
tension-compression limit by equation {20). Figure 4 shows some experimental
results of rotating bending fatigue limits coliected fron the literature.

In the graphs above, the fatigue limits are plotted against the radius of the
specimens, Figures 4a, b, ¢ are from cantilever bending, where Fig. 4d is from
constant moment tests. The solid curves in these graphs are the prediction by
the new criterion. It is seen that the agreement with the experiments is
satisfactory.

f=

23

4.2 Fully reversed combined bending and torsion fatigue tests

Experimental results of fully reversed in-phase bending-twisting test of hard
metals agree very well with the empirical eflipse quadrant eriterion, given by
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vertical load
F= Fa sin ((IN)

y shear stress

due to torsion y normal stress

due to bending

Fig 6 Stress state for combined bending and torsion experiments.

equation (1). From equation (1) it can be seen that the ellipse quadrant involves
two material constants, the fatigue limit in fully reversed torsion ¢t and the
fatigue limit in fully reversed bending f. It is interesting to notice that if the
classical ‘critical plane type’ criterion given by equation (8), is applied to
combined tension-compression and torsion situations, an ellipse arc formula
is obtained (3). This ellipse arc is identical to equation (1) with the exception
that in the place of the bending fatigue limit f, the fully reversed tension—
compression limit s appears

Iz
¢ t s t) s

However, if one tries to predict the behaviour of the material in bending and
torsion following the above tension-compression and torsion ellipse arc, he will
find high discrepancies between predictions and experimental data. In Fig. 5
the results on bending-twisting obtained by Findley et al. (15) on SAE 4340
steel, have been reported.

In the same figure the ellipse arc, based on s and t equation (24), has also
been plotted (dashed curve). All the experimental points fall considerably outside
this ellipse arc. This demonstrates the beneficial effect of the gradient of the
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notrmal stress due to bending. Still, the same data agree very well with the
Gough-Pollard ellipse are, equation (1), based on the [ and ¢ fatigue limits
{solid curve on Fig. 5).

[t is our purpose in this section to prove that the proposed gradient-dependent
fatigue criterion, equation (14), leads to the Gough-Pollard ellipse arc when
applied in combined bending-twisting. On the other hand, for combined
tension-compression and torsion, the proposed criterion reduces to the classical
formula, equation (8), because of the absence of gradient of the normal stress
(i.e. @ = 0). Therefore in that case the ellipse arc, equation {24), is recovered.
Hence, the proposed approach links the gap between zero gradient and non-zero
gradient stress states providing a ‘smooth’ passage from one state to the other.
To prove ihis statement let us consider a combined bending and torsion
experiment, (Fig. 6).

Specimens of toroidal shape are usually used for these tests. The minimal
section of the specimen, where a fatigue crack can potentially appear, is subjected
to pure bending and pure torsion. Considering a point lying on the y-axis, Fig.
6, the stress state is given by

M

b
Gy = 1 ¥ J

M,

xz ﬂ ¥ (25)

The maximum straining occurs at y = R, where the amplitades of the normal
o, and shear g, stresses, denoted respectively as ¢, and 1,, are
M M
*R

— e ="t
0, = ] 3 Ta 2 R (26)

The amplitude of the maximum shear stress &, and the maximum normatl stress

A, acting on the plane of 7 are given by

a

2

a o
T = |74 2 A =02
N R @)

Taking into account equation (25) the components of the gradient of £, (the
partial derivatives with respect to x, y and z} and its norm % are

[a‘/lﬁ:ax — 0, a"ir/;;ax . a(axxfz) _ JIWb _ G, aNm.“ — 0:|’ @ O,

=5R (28)

ax By oy 20 2R 8z

Applying the proposed criterion, equation {14), and substituting the parameters
v, oo and f§ from equations (16—17) and (19) we obtain

H%ﬂl) 2\/_(———)2f\r 29)

It is recalled that § is identified from a fully reversed pure bending test. It is
also assumed that this test has been performed on a specimen of the same radius
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R as the specimens used for the combined bending-torsion tests. Obviously the
radius R disappears from the above formula and after some elementary algebra
equation (29) leads to the Gough—Pollard ellipse arc, equation (1). The proof
is completed.

5 Conclusions

A gradient-dependent multiaxial fatigue criterion has been developed in the
present work. A critical plane classical fatigue criterion has been used as a
working hypothesis for the derivation of the gradient dependent criterion. This
criterion has been adequately maodified to include the stress gradient. The
proposed formula has been obtained following a phenomenological approach.
The guidelines for the development of the new criterion have been provided by
the critical examination and comparison of uniaxial zero and non-zero gradient
tests (bending, tension—compression, and torsion), Application of the proposed
criterion in the case of fully reversed bending of cylindrical specimens of various
radii, showed good agreement between theory and experiments. A remarkable
result concerns the combined fully reversed bending and torsion tests. It is
demonstrated that the proposed gradient-dependent criterion leads to the
well-known ellipse arc formula of Gough and Pollard that depends on the
fatigue limits in fully reversed bending and fully reversed torsion. Furthermore,
the proposed formula for combined tension—compression and torsion loading
leads to an ellipse arc that differs from the Gough-Pollard formula regarding
only the bending fatigue liomt which is replaced by the limit in tension-
compression. Hence, the presented approach constitutes a unified framework
for zero and non-zero gradicnt stress states, providing a ‘smooth’ passage from
one state to the other. Finally it is of interest to note that by incorporating the
stress gradient into the fatigue criterion, a so-called weak nonlocality has been
introduced. In that respect this resembles the (weak) nonlocal gradient plasticity
theories, (16).
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