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ABSTRACT An approximate analytical method is developed to calculate notch-root stresses
and strains in a notched bar of elastaplastic, isotropic material subjected to nonproportional
multiaxial noeminal leading. The notched structure is treated as an equivalent anisotropic
material/structural element and the theory of plasticity of anisotropic metals is used to define
a yield surface in nominal stress space that incorporates both the isotropic material propertics
and the anisotropic geometry factors of the notch. Notch-root plastic strain increments and
workhardening effects are thes related to this yield surface using standard methods of plasticity.
The method is compared with sirain gauge measurements and finite-clement analyses of
circumferentially notched shalis subjected to nonproportional tension-torsion nominal loading
paths with zero mean nominal load. The strain calculations agree well both qualitatively and
quantitatively with the experimental results and finite-clement analyses, and are suitable for
strain-life fatigue calculations,

Notation

E elastic modulus

F, G H, L Mand N coeflicients of anisotropy

K,. shear stress concentration factor

K, uniaxial stress concentration factor

K transverse stress concentration factor

) equivalent nominal stress

Sy nominal stress tensor

X, Y,Z, R Sand T nominal yield strengths

dér equivalent notch root plastic strain increment
def notch root plastic strain increment tensor
dz plasticity constant

h hardening parameter

£ notch root elastic strain tensor

v Poisson’s ratio

o, notch root tensor
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1 Introduction

Recent advances in the strain-life theory of fatigue have allowed the estimation
of the fatigue life of a component from strains measured at critical locations
for proportional and nonproportional multiaxial loading. However, to estimate
the fatigue life of a component during the design process, strains at critical
locations must be calculated from loads the component must carry and the
geometry of the component.

For uniaxial loading of notched bodies, approximate formulas to calculate
the notch root behaviour have been proposed (3, 4, 14, 15). The behaviour of
multiaxially loaded notched bodies has been of more recent interest. For
proportional loading, approximate formulas have also been proposed (7, 12).
And lastly, nonproportional loading have been considered (1, 2, 8).

In this paper, the yield surface approach to calculate notch strains (1) will be
restated, and compared with experimental results and nonlinear finite-element
analyses of additional loading paths.

2 Strain Behaviour of Smooth and Notched Bars

For a smooth bar of isotropic material subjected to uniaxial tension in the
elastoplastic range of the material, the strains at the surface of the bar in the
transverse and normal directions are equal. That is, for the smooth bar, there
are no preferred directions of material flow. For multiaxial states of stress, the
strains are determined by treating a yield criterion (11) as a potential function
in a suitable flow rule. Material workhardening characteristics are often related
to the yield surface by translating or deforming the yield surface in stress space.

Analogous to the strain behaviour developed during uniaxial tension of a
smooth bar, the strain behaviour developed during uniaxial tension of a notched
bar will motivate the mathematical description of an assumed structural yield
surface of the notched bar. In the elastic range of the notched bar, the notch
root strains are related to the applied loading through the use of a nominal
stress, S, an clastic stress concentration factor in tension, K., and a transverse
stress concentration factor K_. The transverse stress concentration factor is a
measure of the elastic notch constraint, and is a function of the geometry of
the notch. The stress concentration factors can be determined by experiment,
finite-element analysis, or in some cases, by theory of elasticity. By substitution
of the non-zero components of local stress into Hooke’s law, the elastic strains
are related to the nominal stress by

1 1
&= B [K. —vK.,]S, &, = = [-wK,+ K))]S,
r [K.—vK(]S (1)
82 - E z ) Z; z

at the traction-free surface of the notch root.
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Equations (1) state that for an applied nominal load in the axial direction,
strains in the directions transverse to the axial direction are not equal (Fig. 1),
as in the case of the smooth bar. Similar behaviour occurs in the plastic range.
The geometry of the notch, unyielded material around the notch, and the local
multiaxial stress state constrain the deformation in the notch plane. For
volume-conserving metals, this necessitates a larger plastic strain normal to the
notch surface than in the transverse direction of the notched shaft.

3 Eguations for a Notched Round Bar

In terms of the nominal stress, the notch root strains exhibit preferred directions
of plastic flow, or anisotropy, when subjected to uniaxial nominal stress.
Therefore, the notched structure may be treated as an equivalent element of
anisotropic material that has a yield surface described by the developed theory
of plasticity of anisotropic materials, stated in terms of nominal stress.

This structural yield criterion must not only incorporate the deformation
behaviour induced by the geometry of the notch, it must also incorporate
restrictions to the deformation behaviour induced by the material. Thus, for a
metal component, the mathematical implications of the observed zero dilatation
of plastic strain must also be incorporated into the yield criterion. In the following
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section, one particular anisotropic yield criterion will be chosen to represent
the yield surface; however, other yield criteria could also be used.

3.1 Equations for plastic strain increments

Hili’s theory of plasticity of anisotropic materials (5, 6) was developed to model
metals that exhibited preferred directions of volume conserving plastic flow due
to internal microstructure. As the strains at the notch root of a bar also exhibit
preferred directions of plastic flow, Hill’s theory will be applied to this application
as well.

Hill generalized Mises’ yield criterion by introducing coefficients in the Mises
yield criterion. Hill’s yield criterion is

A(Sy) = F(S, - $)* + G(S, — S,)* + H(S, — S,)* (2)
+2LS;, + 2MSE, + 2NS2, = 1

where the coeflicients are determined from the current values of the directional
yield strengths X, Y, Z, R, S, and T associated with the directions of the stress
components §, S, S, S, §,_, and S,,. These relations are

| i i 1
Fepitpoy U=
1 1 i 1
i i l 1
M=sity-7m W=p

An assumption made during the development of the yield criterion was that
elastic normal and shear strains are uncoupled. The directions where this occurs
are known as the principal directions of anisotropy. For the notched round
bar, these directions coincide with the specimen axis, but can be found for other
components made of isotropic material by a tensor rotation,

The yield criterion can be used as a plastic potential and the normality flow
rule
af
def; = di —— 4
h=digs @
can be used in the principal directions of anisotropy to develop equations
analogous to the Prandil-Reuss equations of plasticity for isotropic materials.
The equations for the notch root element of a bar subjected to nominal tension.
and torsion are

de? = di[—GS,] def = di[ —FS,] (5)
de? = di{(G + F)S.] del, = d/MS,
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Hill (6) then assumed an equivalent stress, derived an expression for equivalent
strain, and determined an expression for the plasticity constant, dA. These
expressions are sumimarized as follows

~ N2 h
5= (2) (Fo + Gy + Hy)''? (©)
b= [Fo(S, — 5% + Go(S, — S} + Hy(S, — S,F
+ 2Ly S2, + 2MS3, 4 2N, 5317 (7

2 t72 d l?_ »
diP = (3) (Fo+ Go + HO)L/z[FO( Godey — Hode] )

FoGy+ GoHy + HyF,
H,def — Fodef 2
Go 2 ° (8)
FoGy + GoHy + HoFy
| H, Fode? — Godel 2 2deb? N 2del? N 2dehl 2
FoGo + GoHy + HoFy L, M, N,

di =S de? 9

The equivalent quantitics may be related to the uniaxial nominal stress-notch-
root plastic strain curve by

_ §72 ; G 142
s—(2) [ FetG V"¢ (10)
2] \Fo+Go+H,)
NVF + Gy + Hg\'?
dif = = 010770 P 11
‘ (3> ( Fo+ Gy ) dez (1

The uniaxial behaviour of the notch can be determined from experiment, finite-
element analysis, or a suitable approximate formula for uniaxial loading, such
as those previously discussed.

3.2 Material workhardening

A model of material/structural workhardening is based on the assumption used
in the analysis of anisotropic materials (6). Hill's assumption was that il there
existed a pronounced preferred orientation in the material, then this orientation
will remain in the same relative magnitude as the material workhardens. In this
case, the current values of the directional yield strengths and, consequently the
coefficients of anisotropy remain in the same proportion, and are related by
the hardening parameter, i, equation (7). In other words, X = hX,, Y = hYy,
..., where the subscript 0 denotes the initial value.

For a multiple yield surface plasticity model, this assumption amounts to
requiring that all surfaces are mathematically similar. For the notched bar, this
should be approximately the case, until the notch is grossly distorted and the
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Fig 2 Mroz model in normalized nominal stress space.

bar approaches net section plasticity. For the calculations presented later, a
multiple yield surface model using the Mrox hardening rule (i3) in nominal
stress space (Fig. 2) was selected.

3.3 Determination of coefficients of anisotropy
’ )

The initial coefficients of anisotropy may be determined from the value of
nominal stress that causes yielding at the notch-root, or from the ratios of
strains during simple tension, The assumption that the yield stresses will remain
in proportion leads to plastic strain increments remaining in the same propor-
tion. For smooth bars, the Hill yield criterion reduces to Mises’, and equation
(5) reduces to the Prandt-Reuss equations. For mildly notched bars, the initial
yield strengths can be calculated from the stress concentration factors at the
notch root and the material yield strength. For sharply notched bars, where
the notch root approaches a state of plane strain, the fully developed ratio of
the plastic strain components deviates from the initial ratio as calculated from
the stress concentration factors. For these cases, lhe coefficients can be
detecrmined from either an elastoplastic tensile finite-element analysis, or by
assuming that the plastic flow in the hoop direction of the notched bar is zero.

34 Elastic strains

if the shalt is in the clastic range, the initial stress concentration factors may
be used to find the elastic strain increments from
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However, if the material is not in the elastic range, the initial elastic stress
concentration factors no longer hold. In this case, the elastic strain increments
can be determined by considering the local notch stresses and the boundary
conditions of the notch.

Local stress increments can be determined from the previously computed
plastic strain increments and from the condition of the traction-free surface at
the notch-root (or known pressure in the case of the inside wall of a pressure
vessel). These stress incremenis can be substituted into Hooke’s law to determine
the local elastic strain increments. Total strains are then obtained by the addition
of the elastic and plastic components of strain.

4 Experimental Set-up

To test the proposed method of calculating notch strains, solid shafts made of
1070 steel were machined with a circumferential notch to the dimensions
indicated in Fig. 3. A strain gauge rosette was placed at the notch-root to record
the surface strain state during testing. Proportional and nonproportional cyclic
tension-torsion tests were conducted at several values of load, and on several
specimens. The elastic stress concentration factors for the notched shaft were
experimentally found to be K, = 145, K, = L.15, and K, = 0.30.
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5 Finite-element Analysis

A converged finite-element mesh of the notched shaft was constructed by
Kottgen (10). A three-dimensional slice of the shaft was modelled with boundary
conditions of the faces of the slice being constrained to move the same in the
radial and hoop directions. An Abaqus user material implementation of the
Mréz work-hardening plasticity model (9) was used for the analyses of the
nonproportional loading paths. The elastic stress concentration factors for the
notched shaft from the finite-element analysis were found to be K, = 1.41,
K, =115 and K| = 0.26.

6 Comparison of Methods

To demonstrate the applicability of a yield surface representation of the material
behaviour, the notched shaft was first subjected to a nonproportional box-
shaped tension-torsion loading path, Fig. 4(a). As demonstrated at low levels
of load (1), such that the material at the notch-root had not yielded, the axial
strain and shear strain response was uncoupled. This uncoupled behaviour
appears as portions of the strain response parallel to the axes of axial or shear
strain, in an axial strain versus shear strain plot. At increasing values of load,
the material at the notch-root yields, and the shear and axial strains become
coupled. The regions of strain coupling can be seen as the nonaxis parallel
portions of the strain response in Fig, 4(b), for which the direction of travel
around the loading path was counter-clockwise.

Such material behaviour is qualitatively expected from a yield surface material
model. The coupled portions of the strain response correspond with the influence
of the incremental plasticity constant, d4, that increases as the equivalent stress
increases when approaching each corner. At the corner points, the loading
direction is abruptly changed to unioad into the initial yield surface, which is
modelied as the elastic region of the material. When the initial yield surface is
completely traversed, the incremental plasticity constant again increases until
tive next corner is reached, and so on.

Both the simplified model and the finite-clernent model exhibit this equivalent
strain behaviour, as demonstrated in Fig. 4(c-d). The finite-element model uses
isotropic plasticity theory in terms of real stresses at each integration point in
the model, using the material’s uniaxial stress—strain response as the basis for
the equivalent stress—strain curve. The simplified model, however, uses aniso-
tropic plasticity theory to directly relate the applied nominal stresses to notch
strain, using the structural uniaxial stress—notch strain response as the basis of
the equivalent nominal stress-notch strain curve. Because the strain response
is directly calculated from the nominal load, the calculation time required is
significantly less for the simplified model than the finite-clement model.

The data required for the calculation of the surface strains of notched bars
are given in Table 1. The minimum requirements for mildly notched shafts are
the elastic stress concentration factors, smooth specimen material properties for
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use with an appropriate uniaxial nominal stress—notch strain formula, and an
assumed hardening rule.

Table I Data required for use of the simplified method.

Elastic geomelry factors: K., K. K
plastic strain ratio, 6‘;'/'8: one for smooth bars, zero for highly con-
strained notches; can be determined from K
for mild rotches

Material properties: Kon', B, v
Uniaxial strecture load-strain curve Glinka’s formula, or FEA
Hardening rule for multiaxial loading Mroz hardening rule

If the direction of travel around the foading path of Fig. 4(a) is reversed, so
that it is clockwise, the same basic features will be observed in the models. This
is indeed the case experimentally, as Fig. 4(e) shows for the strain response of
such a loading path.

Another common nonproportional loading path is one in which the frequency
of the applied loads is unequal. For example, Fig. 5(a), is a loading path in
which there are five cycles of tension for one cycle of torsion. For the same
values of maximum nominal load, the experimental strain response is given in
Fig. 5(b) for one hundred repeats of the loading path. The presence of plasticity
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occurring during this loading path is indicated by the offset of the peaks in the
strain response. If the material had remained elastic, the strain path would have
taken the same shape as the loading path. The results of the simplified inodel
and the finite-element model are presented in Figs. S(c—d), for five repetitions
of the loading path. Also note the transient strain response from the initial
loading cycle of the experiment before the material continues in a cyclic path,
and the similar initial response and the subsequent cyclic response of the models,
as the yield surfaces translate in stress space.

A comparison of the experimental response to the methods of notch strain
calculation are also presented for loading paths where the frequency of the
applied loads §,: 8, is 1:5 (Fig. 6). For all of these paths, the calculations of
the simplified model matches quite closely with that of the finite-element analysis,
which in turn agrees well with the experimental resubts.

7 Summary

A simplified method of calculating notch-root strains from applied nonpropor-
tional nominal load has been developed, using the concept of a structural yield
surface. The yield surface was assumed to be anisotropic to account for preferred
directions of plastic flow at the notch root due to geometric constraint, and the
coeflicients of anisotropy were determined from elastic stress concentration
factors of the notch and the isotropic material yield strength. The method
compared well with experimental results and finite-element analysis of a notched
shaft subjected to nonproportional tension and torsion loading paths with zero
mean nominal load.
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